
Servo Commander 32

32 Servo Control Outputs
User’s Guide

Innovati’s Servo Commander 32 module incorporates BASIC
Commander® – BC1 and two Servo Runner A modules. It saves
area occupied by the control modules and connection
wires while keeping all the functions of Servo Runner A,
controls 32 servos simultaneously, and the simple and
integrated software functions enabling users to di-
rectly control the servo movement by fixed speed
or common time. There are up to 250 memory
blocks for storing the addresses and motion
configurations (speed or time), thus various
ways of motions can be achieved through the com-
binations of actions. Please use “ServoRunnerA” as the
module object name with address 0 and 1 in program.

Version: 1.2

http://www.innovati.com.tw/

i

Trademark
Innovati®, , and BASIC Commander® are registered trademarks of Innovati, Inc.

InnoBASIC™ and cmdBUS™ are trademarks of Innovati, Inc.

Copyright © 2008-2009 by Innovati, Inc. All Rights Reserved.

Due to continual product improvements, Innovati reserves the right to make modifications to its
products without prior notice. Innovati does not recommend the use of its products for applica-
tion that may present a risk to human life due to malfunction or otherwise.

No part of this publication may be reproduced or transmitted in any form or by any means with-
out the expressed written permission of Innovati, Inc.

Disclaimer
Full responsibility for any applications using Innovati products rests firmly with the user and as
such Innovati will not be held responsible for any damages that may occur when using Innovati
products. This includes damage to equipment or property, personal damage to life or health,
damage caused by loss of profits, goodwill or otherwise. Innovati products should not be used for
any life saving applications as Innovati’s products are designed for experimental or prototyping
purposes only. Innovati is not responsible for any safety, communication or other related regula-
tions. It is advised that children under the age of 14 should only conduct experiments under
parental or adult supervision.

Errata
We hope that our users will find this user’s guide a useful, easy to use and interesting publication,
as our efforts to do this have been considerable. Additionally, a substantial amount of effort has
been put into this user’s guide to ensure accuracy and complete and error free content, however
it is almost inevitable that certain errors may have remained undetected. As Innovati will continue
to improve the accuracy of its user’s guide, any detected errors will be published on its website.
If you find any errors in the user’s guide please contact us via email service@innovati.com.tw. For
the most up-to-date information, please visit our web site at http://www.innovati.com.tw.

ii

Table Of Content

Product Overview ... 1

Application .. 1

Product Features ... 2

Connection .. 3

Product Specifications .. 5

Precautions For Operations 6

Commands and Events ... 7

Example Program ... 10

Appendix ... 13

1

Servo Commander 32 User’s Guide

Product Overview
Innovati’s Servo Commander 32 module incorporates BASIC Commander® – BC1
and two Servo Runner A modules. It saves area occupied by the control modules
and connection wires while keeping all the functions of Servo Runner A, controls 32
servos simultaneously, and the simple and integrated software functions enabling us-
ers to directly control the servo movement by fixed speed or common time. There are
up to 250 memory blocks for storing the positions and motion configurations (speed
or time), thus various ways of motions can be achieved through the combinations of
actions. Please use “ServoRunnerA” as the module object name with address 0 and
1 in program.

Application
• The operation and application of various servos including the robotic arms, robotic

joints, etc.

• Various applications of small servos.

2

Product Features
• Complete functions and hardware interfaces of BC1 and two Servo Runner A mod-

ules.

• Built-in cmdBUS connection between BC1 and two Servo Runner A modules: Ex-
ternal connection is unnecessary.

• Shared power jumpers of the servos and control electronics: A single power supply
is sufficient for servos and control electronics.

• 32 servo control output interfaces for controlling 32 servos simultaneously.

• Capable of controlling the position of the servo from 0.5 ms to 2.5 ms.

• Software fine-tune commands allow the user to fine adjust the rotation angle of
each servo in the range of -128~127 µs only by software setting without the disas-
sembly of the machine.

• Program allows user to set the rotation speed of the servo. The user can set multiple
levels of the rotation speed of the servo according to the requirements.

• User can set a common time for every servo to reach different rotation angle at the
same time.

• Built-in 250 memory blocks in the Servo Commander board. Each memory block
can store the current target positions, speeds or the time parameters of the 32 servos
which can be restored directly on demand, and thus avoid repeated setting opera-
tions and allows the user to combine the actions for various operations.

• 4 event notifications allowing the user to proceed to the next operation once the
completion of the action is detected. The event can be configured based on detec-
tion the state of the any one of the 32 servos.

• Various state inquiry commands allows the user to confirm whether the action of
the servo is completed or not at any time, to acquire the current position and the
target position, to fine adjust the parameters or the preset time and speed values.

• Resolution can be as small as 2µs.

Note: This manual mainly discusses the servo control. For commands and system configurations of BASIC
Commander, please refer to “BASIC Commander® & innoBASIC™ Workshop Reference Manual.”
 To execute functions related to servo control, please set the module number as 0 and 1 in the program.

3

Servo Commander 32 User’s Guide

Connection
The module has 32 servo connectors with 3 pins for each connector. The servo con-
nectors provide servos with power and control signals, and are divided into two
groups. The upper 16 connectors belong to the servo module 1 while the lower 16
connectors the servo module 0. To control servos, connect proper pins of servos to
these connectors (as shown in the right figure). Two power supply connections are
available, as shown in Figures 1 and 2. Before connecting the power, please check the
current and voltage of the servo to avoid motor damages due to abnormal operations.

Figure 1: The servo and the control electronics use different power supplies.

 Servo

ID=1
ID=0

11

40

40
73

73

128

128
1511

1511

VINRes RES

I/O
 P

IN

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Vser

Vser Vser Vser Vser

VI
N-

Vs
er

cm
dB

US

VIN GND SDA SCL EVT SYN

www.innovati.com.tw

5V GND

Commander32

V
IN

-6
-1

2V

Vser

4

Figure 2: The servo and the control electronics use the same power supply.

Before using the connection shown in the figure, please make sure the voltage of the power supply is
within the servo’s voltage tolerances.

 Servo

ID=1
ID=0

11

40

40
73

73

128

128
1511

1511

VINRes RES

I/O
 P

IN

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

Vser

Vser Vser Vser Vser

VI
N-

Vs
er

cm
dB

US

VIN GND SDA SCL EVT SYN

www.innovati.com.tw

V
IN

-6
-1

2V

5V GND

Commander32

Please Short-Circuit These Two
Pins With A Jumper.

5

Servo Commander 32 User’s Guide

Product Specifications

Figure 3: Pin Assignment And Device Description.

 Servo

ID=1
ID=0

11

40

40
73

73

128

128
1511

1511

VINRes RES

I/O
 P

IN

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15
Vser

Vser Vser Vser Vser

VI
N-

Vs
er

cm
dB

US

VIN GND SDA SCL EVT SYN

www.innovati.com.tw

V
IN

-6
-1

2V

5V GND

Commander32

There are 32 connectors in total. Both the upper and
lower halves have 16 connectors numbered 0~15.
The upper half belongs to the servo module 1 and
the lower half the servo module 0. Please write the
control program with the proper servo module ID. Each
connector has 3 pins: ground, power, and signal, from
left to right. Please mind the pin assignments. Incorrect
connection may damage the devices.

Servo power input: two input power
connectors are available. Either can
be used. Please mind the positive and
negative pin assignment. Incorrect
connection may damage the devices.

GND, 5V, VIN and Res: for special applications that require these
pins.

Reset button: Resets
the system when
pressed.

USB connector: please
connect the module
to the PC with a USB
cable to download
control programs.

16 programmable I/O pins with IDs are shown in the figure. These
pins may be defined by the software programs as outputs or
inputs.

Servo Commander 32
provides two cmdBUS
connectors that can
be connected to other
modules if necessary.
When connecting other
modules, please mind
the pin assignments.
Vin has to be connected
to the Vin on other
modules. Incorrect con-
nection may damage
the devices.

Please attach a 6-12V power
supply here to power the
electronics.

With the two pins shorted with a jumper,
VIN and Vser share the same power sup-
ply. Please do not connect VIN and Vser
to different power supplies when the
jumper is installed.

Current consumption: 37.5 mA (the current consumed at VIN when the Servo Com-
mander 32 module is not connected to any servo.)

Module Dimensions: 57.5 x 58.6 (mm)

6

Precautions For Operations
Please make sure of the voltage and current ranges required for the connected servos.
Select a suitable power supply and connect correctly to the Vser.

The Pulse pins of the servo should be connected to the module in a way complying
with the requirements shown in Table 1. (This is the range allowing the module to
operate.)

Symbol Parameter
Test Conditions

Min Typ Max Unit
VIN=7.5V Conditions

VOH I/O Port output high voltage - No loading - 5 - V
VOL I/O Port output low voltage - No loading - 0 - V
IOL I/O Port Sink Current - Vload=0.1VOH 10 20 - mA
IOH I/O Port Source Current - Vload=0.9VOH -5 -10 - mA

Table 1: Current Limits Of The Servo Commander 32 Module (Test Temperature = 25°C)

Absolute Maximum Ratings:
Operating Temperature of the Module: 0 °C ~ 70 °C (Please confirm the oper-
ating temperature of the servos according to the specifications of the servos)

Storage Temperature of the Module: -50 °C ~ 125 °C

7

Servo Commander 32 User’s Guide

Commands and Events
The following tables list all the unique commands and events provided with the Servo
Runner A Module. Note that essential words in the commands will be written in bold
type and italics in bold type. The bold type word must be written exactly as shown,
whereas the italic bold type words must be replaced with the user values. Note that the
innoBASIC™ language is case-insensitive.

Command Format Description
Servo Position Commands
SetPos (ID, Pos) Set the servo with ID, ranging from 0 to 15, for opera-

tion. The target position is set by Pos. Note that the
allowed range for Pos is 499~2500 in the unit of µs. If
the given value is out of this range, the command will
not be executed.

SetPosAndRun(ID, Pos) Same as command above. Except after settings are
done, the servo starts to operate.

SetPosSpd(ID, Pos, Spd) Set the servo with ID, ranging from 0 to 15, for opera-
tion. The target position is set by Pos and traveling at a
speed of Spd. The larger the Spd value is, the faster the
servo travels. Note that the Spd with value 0 means the
full speed. (Spd unit is µs/s)

SetPosSpdAndRun(ID, Pos, Spd) Same as command above. Except after settings are
done, the servo starts to operate.

SetPosTime(ID, Pos, Time) Set the servo with ID, ranging from 0 to 15, for opera-
tion. The target position is set by Pos and traveling to
the target position in Time milliseconds. The allowable
range of Time is 0~65535. Note that the Time with
value 0 means full speed. If the value of Time is too
short, the servo will travel at full speed.

SetPosTimeAndRun(ID, Pos, Time) Same as command above. Except after settings are
done, the servo starts to operate.

Servo Start Commands
Run1Servo(ID)
 :
Run15Servo(ID1, ⋯, ID15)
RunAllServo()

According to the set value of servo ID(s), ranging from
0 to 15, each corresponding servo will perform the
preset operation. If the servo starts without the speed
or time settings but only the position setting, the servo
will travel at the maximum speed. If any ID value out of
its range, this command will not be executed.

Run1ServoWithEventA(ID)
 :
Run15ServoWithEventA(ID1, ⋯, ID15)
RunAllServoWithEventA()

Same as above, except that the event A will be trig-
gered when all the indicated servo reach their target
positions.

Run1ServoWithEventB(ID)
 :
Run15ServoWithEventB(ID1, ⋯, ID15)
RunAllServoWithEventB()

Same as above, except that the event B will be trig-
gered when all the indicated servo reach their target
positions.

8

Command Format Description
Run1ServoWithEventC(ID)
 :
Run15ServoWithEventC(ID1, ⋯, ID15)
RunAllServoWithEventC()

Same as above, except that the event C will be trig-
gered when all the indicated servo reach their target
positions.

Run1ServoWithEventD(ID)
 :
Run15ServoWithEventD(ID1, ⋯, ID15)
RunAllServoWithEventD()

Same as above, except that the event D will be trig-
gered when all the indicated servo reach their target
positions.

Servo Stop Commands
Pause1Servo(ID)
 :
Pause15Servo(ID1, ⋯, ID15)
PauseAllServo()

According to the set value of servo ID(s), ranging from
0 to 15, each corresponding servo will stop at the preset
operation. If any ID value out of its range, this com-
mand will not be executed.

Stop1Servo(ID)
 :
Stop15Servo(ID1, ⋯, ID15)
StopAllServo()

Same as above, except that the control signal ceases
to transmit to the servo(s). As a result, the servo will
change its position by applying an external force.

Servo and Memory Status Commands
Get1ServoReadyStatus(ID, Status)
 :
Get15ServoReadyStatus(ID1, ⋯, ID15, Status)
GetAllServoReadyStatus(Status)

Get the operation status of the servo(s) indicated by
ID(s), ranging from 0 to 15, and store the status in
Status. When all the servo reach their target positions,
the returned status will be 1, otherwise value 0 will be
returned.

GetNowPos (ID, Pos) Get the current position of the servo indicated by ID,
ranging from 0 to 15, and then store it in the word
variable Pos.

GetPos(ID, Pos) Get the target position of the servo indicated by ID,
ranging from 0 to 15, and then store it in the word
variable Pos.

GetPosOffset(ID, Offset) Get the position offset of the servo indicated by ID,
ranging from 0 to 15, and then store it in the short vari-
able Offset, ranging form -128 to 127. The unit of Offset
is microsecond (µs).

GetSpdAndTime(ID, Type, Value) Get the motion type of the servo indicated by ID, rang-
ing from 0 to 15, and store the values in Type. The corre-
sponding setting values are stored in the word variable
Value. If the set servo travel type is speed, then the
returned value for Type will be 1. If the set servo travel
type is time, then the returned value for Type will be 0.

LoadFrame(FrameID) Load the servo operation settings from the frame
memory block indicated by FrameID, ranging from 0
to 249, as the current target position and motion type
of the servo.

SaveFrame(FrameID) Store the current settings of servo operations into the
frame indicated by FrameID, ranging from 0 to 249.

SetPosOffset(ID, Offset) Set the offset of the servo indicated by ID with the
value Offset, ranging from -128 to 127.

LoadOffset() Load the offset value from the EEPROM and replace the
current settings.

SaveOffset() Store current offset value into the EEPROM.

Table 2: Command Table

9

Servo Commander 32 User’s Guide

Event Name Description
ServoPosReadyEventA Execute the RunNServoWithEventA command, where N can be

literally 1~15 or All. When all the indicated servo reach their target
positions, this event will be triggered.

ServoPosReadyEventB Execute the RunNServoWithEventB command, where N can be
literally 1~15 or All. When all the indicated servo reach their target
positions, this event will be triggered.

ServoPosReadyEventC Execute the RunNServoWithEventC command, where N can be
literally 1~15 or All. When all the indicated servo reach their target
positions, this event will be triggered.

ServoPosReadyEventD Execute the RunNServoWithEventD command, where N can be
literally 1~15 or All. When all the indicated servo reach their target
positions, this event will be triggered.

Table 3: Event Provided By The Module

10

Example Program
‘ In the example program, the position value is set according to the range of
‘ the majority of the servo.
‘ Please adjust the allowed position range for the servo to avoid damage
‘ to the servo.
Peripheral mySer0 As ServoRunnerA @ 0	 ‘ Set the module to be operated as 0.
Peripheral mySer1 As ServoRunnerA @ 1	 ‘ Set the module ID as 0.
				 ‘ Note: The module number must be set to
				 ‘ 0 or 1 to use the servo related
				 ‘ commands of the Servo Commander A.
Dim EventEnd0, EventEnd1 As Byte	 ‘ Store the variable for determining the
				 ‘ completeness of the event.
Dim i As Byte			 ‘ Store the loop variable.
Dim SerStatus0, SerStatus1 As Byte	 ‘ Store the Status of the Servo0 and
				 ‘ Server1 Motor.

Sub Main()			 ‘ Main subroutine
mySer0.SetPosOffset(0, 0)	 ‘ Set the offset value of Servo0 as 0.
mySer1.SetPosOffset(0, 0)	 ‘ Set the offset value of Servo1 as 0.
mySer0.SetPosAndRun(0, 1500)	 ‘ Activate Servo0 to move to the
				 ‘ position 1500.
mySer1.SetPosAndRun(0, 1500)	 ‘ Activate Servo1 to move to the
				 ‘ position 1500.
Pause 1000			 ‘ Pause a time interval for the servo
				 ‘ motor to move to the target position.

mySer0.SetPos(0, 2200)		 ‘ Set the target position of Servo0 as
				 ‘ 2200.
mySer1.SetPos(0, 2200)		 ‘ Set the target position of Servo1 as
				 ‘ 2200.
mySer0.SaveFrame(0)		 ‘ Store the motion of the currently
				 ‘ indicated servo0 motor into Frame0.
mySer1.SaveFrame(0)		 ‘ Store the motion of the currently
				 ‘ indicated servo1 motor into Frame0.
mySer0.Run1Servo(0)		 ‘ Allow Servo0 to start the motion.
mySer1.Run1Servo(0)		 ‘ Allow Servo1 to start the motion.
Pause 500

mySer0.SetPosSpdAndRun(0, 700, 1000) ‘ Activate Servo0 and then move to the
				 ‘ position 700 at a speed of 1000.
mySer1.SetPosSpdAndRun(0, 700, 1000) ‘ Activate Servo1 and then move to the
				 ‘ position 700 at a speed of 1000.

11

Servo Commander 32 User’s Guide

Pause 2000
mySer0.SetPosTimeAndRun(0, 2200, 1000) ‘ Activate Servo0 and move to the
				 ‘ position 2200 for a time interval of
				 ‘ 1 second.
mySer1.SetPosTimeAndRun(0, 2200, 1000) ‘ Activate Servo1 and move to the
				 ‘ position 2200 for a time interval of
				 ‘ 1 second.
Pause 1000

EventEnd0=0
EventEnd1=0
mySer0.SetPosTime(0, 700, 1000)	 ‘ Set Servo0 to move to the position 700
				 ‘ for a time interval of 1 second.
mySer1.SetPosTime(0, 700, 1000)	 ‘ Set Servo1 to move to the position 700
				 ‘ for a time interval of 1 second.
mySer0.SaveFrame(1)		 ‘ Store the motion of the currently
				 ‘ indicated servo into Frame1.
mySer1.SaveFrame(1)		 ‘ Store the motion of the currently
				 ‘ indicated servo into Frame1.
mySer0.Run1ServoWithEventA(0)	 ‘ Activate Servo0 and generate EventA
				 ‘ when it completes the operation.
mySer1.Run1ServoWithEventA(0)	 ‘ Activate Servo1 and generate EventA
				 ‘ when it completes the operation.

Do
Pause 1

Loop Until EventEnd0=1 and EventEnd1=1

‘ The following loop repeats to read the setting values in Frame0 and Frame1
‘ and then activate Servo0 and Servo1 for operation.
‘ The position value stored in Frame0 is 2200. The position value stored in
‘ Frame1 is 700.
‘ Servo0 and Servo1 will move between these two positions back and forth 4
‘ times.
For i=0 To 3

mySer0.LoadFrame(1)		 ‘ Read the setting value stored in Frame1.
mySer1.LoadFrame(1)		 ‘ Read the setting value stored in Frame1.
mySer0.Run1Servo(0)
mySer1.Run1Servo(0)
Pause 1000
mySer0.LoadFrame(0)		 ‘ Read the setting value stored in Frame0.
mySer1.LoadFrame(0)		 ‘ Read the setting value stored in Frame0.
mySer0.Run1Servo(0)
mySer1.Run1Servo(0)

12

Pause 1000
Next

mySer0. SetPosAndRun(0, 1500)
mySer1. SetPosAndRun(0, 1500)
‘ The following loop repeats to perform the operation of reading the Status.
‘ After the completion of the operation is confirmed, the loop will stop.
Do

mySer0.Get1ServoReadyStatus(0, SerStatus0)
		 ‘ Read the status of Servo0 and then store it in SerStatus0.
mySer1.Get1ServoReadyStatus(0, SerStatus1)
		 ‘ Read the status of Servo1 and then store it in SerStatus1.

Loop Until SerStatus0>0 And SerStatus1>0
End Sub

Event mySer0.ServoPosReadyEventA()
mySer0.SetPosAndRun(0, 2200)
Pause 1000
EventEnd0=1

End Event

Event mySer1.ServoPosReadyEventA()
mySer1.SetPosAndRun(0, 2200)
Pause 1000
EventEnd1=1

End Event

13

Servo Commander 32 User’s Guide

Appendix

Known problem:

※The version is specified in the laser label on the module.

	Product Overview
	Application
	Product Features
	Connection
	Product Specifications
	Precautions For Operations
	Commands and Events
	Example Program
	Appendix

