
5-1

Time Keeper A Module User’s Guide
Version: V1.0

Product Overview: Innovati’s Time Keeper A
Module is designed to provide versatile time and
date related features. As it contains a fully
integrated weekday mapping function, when the
present day is inputted, the corresponding weekday can be determined automatically. In
addition, it provides a secondary time function that can be setup by the user, and 8 additional
countdown timers that can meet the requirements of the user for multiple timer functions. A
calibration function is provided, which can help control the time error of each day to be
within 0.08 seconds. Please use “TimeKeeperA” as the module object name in program.

Application:
 It can be used together with the LCD Module for displaying the time as a simple

electronic clock.
 It can work with other of modules as the scheduler.
 It can be easily used for calendar applications and provide various notifications for

versatile schedules.
 It can be connected to switches and used as regular timers for various appliances or to

perform scheduled activations.

Product Features:
 The year, month, date, weekday, hour, minute, second within AD 2000~2099 can be

automatically counted.
 Provide the time display in both 24- and 12-hour format.
 Five subsidiary timers are provided for setting the hour, minute and second.
 Versatile notifications, which allows the modes such as every second, every minute,

every hour, every day, every week, every month, etc., and several modes to exist at the
same time.

 The 8 timers allow the user to set count down operations with the value range from the
unit of days to the unit of seconds.

 The accuracy can be finely adjusted to reduce the time error. The most accurate condition
can be as low as 3.052ppm.

Connection: Directly setup the ID switches to the required number, and then connect the
cmdBUS cable to the corresponding pins on the BASIC Commander (shown in the following
figure). Then the required operations can be performed through the BASIC Commander. DC
power (6~12V) and ground should be connected to VIN and GND pin.

5-2

0
1

2
3

4

1 0

i
n
n
o
v
a
t
i
,
i
n
c
.

EV
T

SY
N

VI
N

G
N

D

SD
A

SC
L

www.innovati.com.tw

cmdBUS

T
i
m
e

K
e
e
p
e
r
A

38.8 mm

26.9 mm

44.5 mm

B
C
2

6-12V

cmdBUS pin. Connect these pins to the corresponding pins on
the BASIC Commander. Then the Timer module can be
controlled through the BASIC Commander. While connecting
the pin, connect Vin to the Vin pin on the BASIC Commander.
If the pins are incorrectly connected, the module may be
damaged.

5-3

Product Specifications:
Operating current : Approximately 9 mA

Precautions for Operations:
Please use CR2032 type batteries. When replacing with other batteries, please check their
operating precautions.

Absolute Maximum Ratings:

Operating Temperature : 0°C~70°C (excluding the batteries)
Storage Temperature : -50 °C~125°C

Commands and Events:
The following tables list all the unique commands and events provided with the Time Keeper
A Module. Note that essential words in the commands will be written in bold type and italics
in bold type. The bold type word must be written exactly as shown, whereas the italic bold
type words must be replaced with the user values. Note that the innoBASIC language is
case-insensitive.

Command Format Description
Time and Date Setting Commands
Set12Hour(Hour, AMPM) Set the hour of the Time Keeper module specified by the

byte value Hour, ranging from 1 to 12.The byte value
AMPM with value 0 represents AM and 1 represents PM.

SetDate(Date) Set the date of the Time Keeper module specified by the
byte value Date ranging from 1 to 31. If the date that
does not exist in the corresponding month is set, the day
will automatically be set to 1.

SetHour(Hour) Set the hour of the Time Keeper module specified by the
byte value Hour ranging from 0 to 11 for 12-hour format
and 0 to 23 for the 24-hour format.

SetMinute(Minute) Set the minute of the Time Keeper module specified by
the byte value Minute ranging from 0 to 59.

SetMonth(Month) Set the month of the Time Keeper module specified by
the byte value Month ranging from 1 to 12.

SetTimeAndDate (Year ,
Month, Date, Hour, Minute,
Second)

According to the current date and time of the Time
Keeper module by the byte values Year, Month, Day,
Hour, Minute and Second. The input range of Year is
0~99, which represents AD 2000~2099.

SetSecond(Second) Set the second of the Time Keeper module specified by
the byte value Second ranging from 0 to 59.

SetSubTime(SubID, Hour,
Minute, Second)

Set the subsidiary timer specified by SubID, ranging from
0 to 4, for setting the hour, minute, second by the byte
variables Hour, Minute and Second.

5-4

SetYear(Year) Set the year of the Time Keeper module by the byte
variable Year , ranging from 0~99, which represents AD
2000~2099.

Time Reading Commands
Get12Hour(Hour, AMPM) Get the current time in the 12-hour format and store the

hour value in the byte variable Hour, and represent the
morning or afternoon by AMPM. If AMPM has value 0
represents morning, and 1 represents afternoon.

GetDate(Date) Get the date and store it in the byte variable Date.
GetHour(Hour) Get the hour and store it in the byte variable Hour.
GetMinute(Minute) Get the minute and store it in the byte variable Minute.
GetMonth(Month) Get the month and store it in the byte variable Month.
GetTimeAndDate(Year , Month,
Date, Weekday, Hour, Minute,
Second)

Get the current time and store the values of the year,
month, day, weekday, hour, minute, and second in the
byte variables Year , Month, Date, Weekday, Hour,
Minute and Second, respectively. The weekday is stored
in a way that Sunday is represented by 0 and Monday
through Saturday are represented by 1~6.

GetSecond(Second) Get the current time and store the value of second in the
byte variable Second.

GetSubTime(ID, Hour, Minute,
Second)

Get the subsidiary timer specified by ID, ranging from 0
to 4, and then store the values of the hour, minute and
second in the byte variables Hour, Minute and Second.

GetWeekDay(Weekday) Get the current weekday and store in the byte variable
Weekday.

GetYear(Year) Get the current year and store in the byte variable Year.
Event Related Commands
DailyAlarmOn(AlarmID) Enable the daily alarm specified by the byte value

AlarmID, ranging from 0 to 7.
DailyAlarmOff(AlarmID) Disable the daily alarm specified by the byte value

AlarmID, ranging from 0 to 7.
DisableDailyEvent() Disable the event DailyEvent.
DisableHourlyEvent() Disable the event HourlyEvent.
DisableMinutelyEvent() Disable the event MinutelyEvent.
DisableSecondlyEvent() Disable the event SecondlyEvent.
EnableDailyEvent() Enable the event DailyEvent.
EnableHourlyEvent() Enable the event HourlyEvent.
EnableMinutelyEvent() Enable the event MinutelyEvent.
EnableSecondlyEvent() Enable the event SecondlyEvent.
GetDailyAlarm(AlarmID,
Hour, Minute)

Get the settings of the daily alarm specified by the byte
value AlarmID, ranging from 0 to 7. Store the values of
the hour and minute in the byte variables Hour and

5-5

Minute.
GetHourlyAlarm(AlarmID,
Minute)

Get the settings of the hourly alarm specified by
AlarmID, ranging from 0 to 7. The value of minute is
stored in the byte variable Minute.

GetMonthAlarm(AlarmID,
Date, Hour, Minute)

Get the settings of the monthly alarm specified by the
byte value AlarmID, ranging from 0 to 7. The values of
the date, hour, and minute are stored in the byte variables
Date, Hour and Minute.

GetWeeklyAlarm(AlarmID,
Weekday, Hour, Minute)

Get the settings of the weekly alarm specified by
AlarmID, ranging from 0 to 7. The values of the
weekday, hour and minute are stored in the byte variables
Weekday, Hour and Minute.

HourlyAlarmOff(AlarmID) Disable the hourly alarm specified by the byte variable
AlarmID, ranging from 0 to 7.

HourlyAlarmOn(AlarmID) Activate the hourly alarm specified by the byte variable
AlarmID, ranging from 0~7.

MonthlyAlarmOff(AlarmID) Disable the monthly alarm specified by the byte variable
AlarmID, ranging from 0~7.

MonthlyAlarmOn(AlarmID) Activate the monthly alarm specified by the byte variable
AlarmID, ranging from 0~7.

SetDailyAlarm(AlarmID, Hour,
Minute)

Set the daily alarm specified by the byte value AlarmID,
ranging from 0 to 7, by the byte values Hour and Minute.

SetHourlyAlarm(AlarmID,
Minute)

Set the the hourly alarm specified by the byte value
AlarmID, ranging from 0 to 7, by the byte value Minute.

SetMonthlyAlarm(AlarmID,
Date, Hour, Minute)

Set the monthly alarm specified by the byte value
AlarmID, ranging from 0 to 7, by the byte value Date,
Hour and Minute.

SetWeeklyAlarm(AlarmID,
Weekday, Hour, Minute)

Set the weekly alarm specified by the byte value
AlarmID, ranging from 0 to 7, by the byte value
Weekday, Hour and Minute.

WeeklyAlarmOff(AlarmID) Disable the weekly alarm specified by AlarmID, ranging
from 0 to 7.

WeeklyAlarmOn(AlarmID) Activate the weekly alarm specified by AlarmID, ranging
from 0 to 7.

Timer Commands
CountDownTimerOn(TimerID) Activate the timer specified by TimerID, ranging from 0

to 7.
CountDownTimerOff(TimerID) Disable the timer specified by TimerID, ranging from 0 to

7.
GetCountDownTimer(TimerID,
Day, Hour, Minute, Second)

Get the time of the count-down timer specified by
TimerID, ranging from 0 to 7. The remaining days, hours,
minutes and seconds are stored in Day, Hour, Minute and
Second.

5-6

SetCountDownTimer(TimerID,
Day, Hour, Minute, Second)

Set the time of the count-down timer specified by
TimerID, ranging from 0 to 7. The remaining days, hours,
minutes and seconds are set by the byte value Day, Hour,
Minute and Second.

Calibration and Reset Commands
ResetTimeAndDate() Reset the Time Keeper module to its default value.
GetAdjustment(AdjValue) Get the fine adjustment value and store it in the variable

AdjValue.
SetClockAdj(AdjValue) Set the fine adjustment value by the value AdjValue.

Refer to Appendix 3 for the detailed settings.

Event Description
Count-down Timer Events
CountDownTimer0Event

:
CountDownTimer7Event

After CountDownTimerOn(TimerID) command is executed,
when the timer counts down to 0, the corresponding event will
be triggered.

Alarm Events
MonthlyAlarm0Event
 :
MonthlyAlarm7Event

After MonthlyAlarmOn(AlarmID) command is executed,
when the time reaches the preset date, hour and minute, the
corresponding event will be triggered monthly.

WeeklyAlarm0Event
 :
WeeklyAlarm7Event

After WeeklyAlarmOn(AlarmID) command is executed, when
the time reaches the preset weekday, hour and minutes, the
corresponding event will be triggered weekly.

DailyAlarm0Event
:

DailyAlarm7Event

After DailyAlarmOn(AlarmID) command is executed, when
the time reaches the preset hour and minute, the corresponding
event will be triggered daily.

HourlyAlarm0Event
:

HourlyAlarm7Event

After HourlyAlarmOn(AlarmID) command is executed, when
the time reaches the preset minute, the corresponding event will
be triggered hourly.

Periodical Events
DailyEvent After EnableDailyEvent command is executed, when the value

of date is changed, the DailyEvent will be triggered. In other
words, the event will be triggered every midnight.

HourlyEvent After EnableHourlyEvent command is executed, when the
value of hour is changed, the HourlyEvent will be triggered. In
other words, the event will be triggered every sharp hour.

MinutelyEvent After the EnableMinutelyEvent command is executed, when
the value of minute is changed, the MinutelyEvent will be
triggered. In other words, the event will be triggered every
sharp minute.

SecondlyEvent After EnableSecondlyEvent command is executed, when the
value of second is changed, the SecondlyEvent will be

5-7

triggered. In other words, the event will be triggered every
sharp second.

Example Program:
Peripheral MyTime As TimeKeeperA @ 0 ' Set module number is 0

Dim CurYear As Byte ' Store the current value of year

Dim CurMonth As Byte ' Store the current value of month

Dim CurDay As Byte ' Store the current value of day

Dim CurWeek As Byte ' Store the current value of weekday

Dim CurHour As Byte ' Store the current value of hour

Dim CurMinute As Byte ' Store the current value of minute

Dim CurSecond As Byte ' Store the current value of second

Dim SecondCnt As Byte ' Count the display time

Sub Main() ' Main program

MyTime.SetTimeAndDate(7, 9, 17, 15, 47, 0) ' Set the current time

SecondCnt=0

MyTime.EnableSecondlyEvent() ' Enable the second event to be activated every second

' The following loop will be exited after time displayed at least 5 times.

Do

Loop Until SecondCnt>5

MyTime.DisableSecondlyEvent() ' Cancel the second event

MyTime.SetMinute(48) ' Set the minute to 48

MyTime.SetSecond(55) ' Set the second to 55

MyTime.SetHourlyAlarm(0, 49) ' Set Alarm #0 with a notification at 49 minutes in every hour

SecondCnt=0

MyTime.HourlyAlarmOn(0) ' Activate Alarm #0 for hourly notifications.

' The following loop will be exited only when the hourly notification is activated.

Do

Loop Until SecondCnt>0

MyTime.HourlyAlarmOff(0) ' Disable the hourly notification of Alarm 0

MyTime.SetCountDownTimer(0, 0, 0, 0, 3) ' Set Timer #0 for the count down of 3 seconds

SecondCnt=0

MyTime.CountDownTimerOn(0) ' Activate Timer #0 to execute the count down operation

' The following loop will be exited only when the count down operation is completed

Do

Loop Until SecondCnt>0

5-8

 MyTime.CountDownTimerOff(0) ' Disable Timer #0

End Sub

Event MyTime.SecondlyEvent()

MyTime.GetTimeAndDate(CurYear,CurMonth,CurDay,CurWeek,CurHour,CurMinute,CurSecond)

 ' Get the current time

Debug CurYear, “/”, CurMonth, “/”, CurDay, “ “, CurHour, “:”, CurMinute, “:”, CurSecond, CR

SecondCnt+=1

End Event

Event MyTime.HourlyAlarm0Event()

Debug “It is 49 minutes now.”, CR

SecondCnt+=1

End Event

Event MyTime.CountDownTimer0Event()

Debug “Count down 3 seconds.”, CR

SecondCnt+=1

End Event

5-9

Appendix
1. Known Problems:
 When using SetHour to set the hour, if the Pause command is used to temporarily

stop for a short time interval and then the hour value is acquired by GetHour,
sometimes an incorrect value will occur.

2. Module ID Setting Table:

1 0234
0

1 0234
8

1 0234
16

1 0234
24

1 0234
1

1 0234
9

1 0234
17

1 0234
25

1 0234
2

1 0234
10

1 0234
18

1 0234
26

1 0234
3

1 0234
11

1 0234
19

1 0234
27

1 0234
4

1 0234
12

1 0234
20

1 0234
28

1 0234
5

1 0234
13

1 0234
21

1 0234
29

1 0234
6

1 0234
14

1 0234
22

1 0234
30

1 0234
7

1 0234
15

1 0234
23

1 0234
31

3. Time Calibration Formula:

To use SetClockAdj to perform a fine calibration of the time difference for a more
accurate time setting, use the SetTimeAndDate command to set the Time Keeper module
to the available precise time (such as from the time reporting station) and then record the
Time to perform the setting operation. Then keep the Time Keeper module unchanged for
a time period and observe the difference between the time read from the Time Keeper
module and the current time. The parameters can be calculated as following.

Total test time = setting time – currently measured time (in seconds)
Current time difference = time measured by Module – actual time (in seconds)
PPM value = (Current time difference/Total test time) * 1000000 (Note 1)

If the time different is positive, the input value should be 128 minus the nearest integer of
(PPM value/3.052).
If the time difference is negative, the input value should be the positive nearest integer of
(PPM value/3.052) + 1.

Note 1:
The allowed range for the fine adjustment is limited in a way that the PPM value should
be within the range from -195.3 to 192.2. If the calculated time difference exceeds this
range, it is not possible to adjust the accurate time with the fine adjustment value.

