

InnoRacer™ 2S

 User’s Guide
Document Revision 1.0

2014.12.10

1

Trademark

Innovati®, , and BASIC Commander® are registered trademarks of Innovati, Inc.

InnoBASIC™, cmdBUS™ , Arminno™ and InnoRacer
™

are trademarks of Innovati, Inc.

Copyright © 2014 by Innovati, Inc. All Rights Reserved.

All other trademarks are the property of their respective owners.

Due to continual product improvements, Innovati reserves the right to make modifications to its products

without prior notice. Innovati does not recommend the use of its products for application that may present a risk

to human life due to malfunction or otherwise.

No part of this publication may be reproduced or transmitted in any form or by any means without the expressed

written permission of Innovati, Inc.

Disclaimer

Full responsibility for any applications using Innovati products rests firmly with the user and as such Innovati will

not be held responsible for any damages that may occur when using Innovati products. This includes damage to

equipment or property, personal damage to life or health, damage caused by loss of profits, goodwill or otherwise.

Innovati products should not be used for any life saving applications as Innovati’s products are designed for

experimental or prototyping purposes only. Innovati is not responsible for any safety, communication or other

related regulations. It is advised that children under the age of 14 should only conduct experiments under

parental or adult supervision.

Errata

We hope that our users will find this user’s guide a useful, easy to use and interesting publication, as our efforts

to do this have been considerable. Additionally, a substantial amount of effort has been put into this user’s guide

to ensure accuracy and complete and error free content, however it is almost inevitable that certain errors may

have remained undetected. As Innovati will continue to improve the accuracy of its user’s guide, any detected

errors will be published on its website. If you find any errors in the user’s guide please contact us via email

service@innovati.com.tw. For the most up-to-date information, please visit our web site at

http://www.innovati.com.tw.

2

Table of Contents

Overview ……………….…………….……………………..………….………….……………… 4

Features ………………………………………………………….……………...………….……… 4

System Diagram …………………………………….……….........……...….….…………… 5

Key Components

� Controller – Cortex®-M3…………………….…….……… 6

� Reflective Infrared Sensors ………………………………………...…..……….…… 6

� Buzzer …………………………………………..……………………………………………… 6

� DC Motors ………………………………….………….……………..……….....………… 6

� Accelerometer and Gyroscope ……………..….…………..….……………..…… 7

Linker Board ……................…..….…….……..….…….……………………………..…… 7

Batteries and Chargers ………..….…….……..….…….……………………………..…… 8

Command Set ……………………..….…….……..….…….……………………………..…… 8

Appendix A --- Tutorial Programs

� Ex. 1 --- Blinking an LED …...................……………………………………….….. 14

� Ex. 2 --- Light LED If Button Pressed ……………..........………..…..…….….. 15

� Ex. 3 --- Motor Speed Control ………………….…………..………………..…….. 15

� Ex. 4 --- Get Infrared Detection Values …….………..……………..………….. 16

� Ex. 5 --- Tracking with 3 Infrared Sensors ……..……………..……………….. 17

� Ex. 6 --- Tracking with 5 Infrared Sensors …..………………..……………….. 18

� Ex. 7 --- PID Control Basics ………………………………………….……………….. 20

� Ex. 8 --- PID Control (Digital Mode) …….………............................…….. 23

3

� Ex. 9 --- PID Control (Analog Mode) …….……………………….…….……….. 25

� Ex. 10 --- Using Gyroscope and Accelerometer …………..……….……….. 26

� Ex. 11 --- Route Memorization …………………………………..…….….…….... 27

� Ex. 12 --- Retrieving Route Information ……………………….……………….. 29

� Ex. 13 --- Acceleration ……..………………………..…….………….….…………... 30

� Ex. 14 --- Ready to go …………….………….…………….…………………….…….. 33

Appendix B --- Sample Course .………………………….………………..…….………. 40

4

Overview

InnoRacer
TM

2S is the second generation of Innovati’s InnoRacer
TM

 line follower series.

Powered by 32-bit Cortex®-M3 controller running at 72MHz, it is capable of accessing

reflective infrared sensors, accelerometer, gyroscope, motor tachometer data and

executing PID control at a higher speed than ever and results in its excellent

performance in line following competitions. InnoRacer
TM

2S is provided with featured

library and example program, which make it not only a great racing robot, but also an

excellent platform in robotics education.

The program development is based on the KEIL
TM

 C development environment.

Featured library is provided to help you be familiar with advanced robotics technique.

Should you have any questions, refer to our related Arminno
TM

user’s manual and

visit KEIL
TM

 C official website for detailed information.

Features

� Using the Cortex®-M3 chip as controller, users can download and debug their

programs through the LINKER board connecting to the InnoRacer
TM

2S.

� Five reflective IR sensors for track detection.

� Two reflective IR sensors on the left side for curvature change mark detection.

� One reflective IR sensor on the right side for Start and Goal mark detection.

� A calibration button to adjust IR detection under different ambient lights.

� Reset button to restart the program.

� Four buttons with LEDs for users to define their own functions and indications.

� A buzzer for built-in low battery warning, mark detection or user’s functions.

� Library functions for two DC motors 1024 steps speed control.

� PID control library functions for adjusting track following capability.

� Built-in sensors for y-axis acceleration and z-axis gyroscope measurement.

� Library for recording track information, including length, maximum or average

acceleration and gyroscope values, curvatures and directions.

� One cmdBUS
TM

connector for Smart Modules expansion, such as Sonar module.

5

System Diagram

Fig 1 System Diagram

Key Components

Fig 2 Key Component Placement

6

Controller – Cortex®-M3

Cortex®-M3 is the main controller of the InnoRacerTM 2S line follower. Users can edit

and compile their program with the ARM® Cortex® environment and download

through a USB cable to the LINKER board. If you are not familiar with the system,

please refer to the relevant manuals for more detailed information.

Reflective Infrared Sensors

In the front of the InnoRacerTM 2S line follower, there are 5 reflective infrared sensors

which are used to detect the track. On the right side, there is one infrared sensor

which is used to detect the Start or Goal mark, indicating the beginning and the end

of the track. On the left side, there are two infrared sensors which are used to detect

the curve change marks throughout the whole route. The track is divided into

segments for route memorization by the curve change marks.

Due to the different ambient light and surface material, the infrared sensing

results may vary under different situations. To eliminate the variance, calibration is

required. By long pressing the rightmost button at the tail of the follower labeled CAL,

built-in calibration function will be invoked, the LED near the CAL button will be lit to

indicate the calibration is in process. Put the InnoRacerTM 2S on the track and move it

back and forth slowly with all the infrared sensors passing the black and white area

of the track several times. Press the CAL button again to finish the calibration process

and the LED will turn off. The infrared detection range of each infrared sensor is

measured and normalized internally for analog infrared intensity sensing use.

Buzzer
The buzzer is mainly used to generate automatically a 0.1 seconds beep sound each

time a curve change mark is detected during the route memorization process. The

buzzer is controlled through the built-in commands. Please refer to the command set

for other buzzer-related commands. Nevertheless, you may still use the BuzzerOn()

command to generate beep sounds in your own application.

DC Motors
The InnoRacerTM 2S is equipped with two spur brushed DC motors. Hall Effect sensor

board is affixed to detect the polarity change of the motor when rotating, through

which you can calculate the distance that each wheel has travelled. This information

is used for route memorization. Note that the DC motor electric brush wears out

when spinning against the mechanical part, the DC motors lifetime is limited.

Running at a high speed for a long time will further shorten the life of the DC motors.

7

Refer to Tutorial Programs section in the appendix for more information about

how to control the DC motors with the given speed parameters.

Accelerometer and Gyroscope

The InnoRacerTM 2S is equipped with a three-axial accelerometer and gyroscope to

measure the acceleration force in x- and y-axis and angular accelerating force in

z-axis, through which you can calculate the curve radius and direction. This

information is used for route memorization.

 The x-axial acceleration is defined in the lateral axis of the InnoRacerTM 2S and

the y-axial acceleration is in the longitudinal axis of the InnoRacerTM 2S. Please refer

to the following picture.

Fig 4 Acceleration Directions

Refer to Tutorial Programs section in the appendix for more information about

how to save the current x- and y-axial acceleration values for calibration at a

standstill position and display them in the Terminal Window.

Linker Board

Use the Linker Board to download or debug your program to the InnoRacerTM. Note

that always turn off the power on the line follower first before you plug in or remove

the Linker board. Connect the flat cable of the Linker board on the Linker Connector

of the InnoRacerTM 2S line follower . Then connect the Linker board to your computer

8

through a USB cable. Now turn on the power of the line follower to download or

debug your program. You may use the power from USB cable without turning on the

power on the line follower, but function is limited.

Fig 3 Linker Board with Flat Cable

Batteries and Chargers

The InnoRacerTM 2S is designed to be powered with 11.1 volts LiPO battery pack. Note

that a low battery situation may cause permanent damage to the LiPO battery pack,

turn on the low battery warning function all the time to protect your battery. To

power the line follower, the slide switch on the right side should be slide to 1

position.

Command Set

The following table lists all the unique commands provided for the InnoRacer 2S.

Note that essential words in the commands will be written in bold type and italics

bold type. The bold type word must be written exactly as shown, whereas the italic

bold type words must be replaced with user values. Note that the C language is

case-sensitive.

To invoke the functions, declare innoRacer2 class first in your program, for

instance, innoRacer2 myRacer.

Command Syntax Description

Motor Speed Control Commands

ForwardL(Speed)

ForwardR(Speed)

ForwardLR(SpeedL, SpeedR)

Sets the forward/backward speed of left or right side

motor by Speed or both SpeedL and SpeedR ranging

from 0 ~ 1024 respectively. The motor rotating

9

BackwardL(Speed)

BackwardR(Speed)

BackwardLR(SpeedL, SpeedR)

direction is defined from the InnoRacer
TM

2S

viewpoint. You may use the SetVal commands, which

use positive and negative values for different rotation

direction, instead of forward and backward terms.

StopL()

StopR()

StopDual()

Stops left, right or both motors.

BrakeL()

BrakeR()

BrakeDual()

Brakes left, right or both motors.

SetVelL(Vel)

SetVelR(Vel)

SetVelLR(VelL, VelR)

SetVelDual(Vel)

Sets the speed of the motor A, B or both specified by

Vel or both VelA and VelB ranging from -1024 ~ 1024

respectively. The absolute value stands for speed and

positive and negative sign stands for rotation

direction.

SetMotorDeadZone(Speed)

Motors start to rotate at a minimum current. Use

Speed to specify the current with its PWM value.

Usually a value around 130 of PWM duty is proper.

Infrared Sensing Commands

GetIr(IR)

Gets the digital values (1 or 0) of all eight infrared

sensors, combining in one data byte with value

ranging from 0 ~ 255 and stores in variable IR. The five

least-significant bits for line tracking sensors and the

higher 3 bits for start/goal and curve changing mark

detection.

GetAnalogIr(ID, IR)

Gets the infrared intensity value ranging from 0 ~

4095 and stores in variable IR. The infrared sensor

unit is specified by ID ranging from 0 ~ 7.

IrCal(Mode)

Sets the IR calibration mode by Mode ranging from 0

~ 4.

0: Calibrate until calibration button pressed.

1: Calibrate for 10 seconds and exit calibration.

2: Calibrate for 20 seconds and exit calibration.

3: Calibrate for 30 seconds and exit calibration.

4: Calibrate for 60 seconds and exit calibration.

GetIrCal(ID, Min, Max)

Gets the minimum and maximum infrared intensity of

specified IR sensor during calibration and stores them

in variable Min and Max. The IR sensor is specified by

10

ID ranging from 0 ~ 7. The infrared intensity value

ranges from 0 ~ 4095.

SetIrThreshold(Rate)

Sets the threshold percentage value specified by Rate

ranging from 0 ~ 100. You can use this setting to

change the infrared sensibility. The default value is 50.

SetIrMode(Mode)

Sets the IR sensors track detection method by Mode

with value 0 for digital mode or 1 for analog mode.

The default value is 0.

SetIrMask(Mode)

Sets the curve changing mark IR detection method by

Mode. With value 0, both IR6 and IR7 are used for

detection; value 1, only IR6 is used for detection;

value 2, only IR7 is used for detection.

PID Commands

SetP(Val)

SetI(Val)

SetD(Val)

Sets the P, I or D parameter by Val. The value ranges

from 0 ~ 255.

SetScalar(Val)
Sets the PID parameters scalar by Val, as a multiple of

the original PID values. In our program, we set to 4.

SetErrScale(Err1, Err2, Err3,

Err4, Err5, Err6, Err7, Err8)

Sets the error values by Err1 through Err8 ranging

from 0 ~ 127 as feedback for PID control for various IR

detection situations. The default values of Err1 ~ Err8

are 1~8 respectively.

Speed Setting and Control Commands

SetSpdCtrlL(SpdMin, SpdMax)

SetSpdCtrlR(SpdMin, SpdMax)

Sets the minimum and maximum speed of the left and

right motor by SpdMin and SpdMax for PID speed

control. SpdMin and SpdMax range from -1024 ~

1024. SpdMax should be greater than SpdMin,

otherwise the command will be ignored.

SetStraight(SpeedL, SpeedR)

Sets the straight line speed of the left and right motor

by SpeedL and SpeedR ranging from -1024 ~ 1024 for

PID speed control.

SetStraightSpd(Speed)

Sets the straight line speed of the left and right motor

by Speed which specifies the traveled distance in

10ms period. A value of 7 is about moving 1 cm

distance in 10ms.

SpdCtrlOn(Mode)

Starts the PID speed control in mode specified by

Mode.

0: Any change of speed settings will terminate the PID

11

speed control automatically.

1: PID control continues regardless of the speed

settings change.

SpdCtrlOff()
Stops the PID speed control. The InnoRacer

TM
2S will

run with the last given speed settings.

ClearRec() Clears all the recorded track section information.

SetCtrlFreq(Period)
Sets the speed control frequency by Period, with

0.5ms unit. In our sample program, we set it to 4.

Tachometer Commands

SetTachInL(TACH)

SetTachInR(TACH)

SetTachInLR(TACHL, TACHR)

Sets the tachometer start counting value of the left,

right or both motors by TACH or both TACHL and

TACHR. , ranging from 0 ~ 65535.

TachInL(TACH)

TachInR(TACH)

TachInDual(TACHL, TACHR)

Gets the tachometer counter value of the left, right or

both motors and stores in variable TACH or in both

TACHL, and TACHR, ranging from 0 ~ 65535.

Track Recording Commands

StartRec(Mode)

Starts to record the track information. If the Mode is

set to 1, the track information will be saved to FLASH

memory also. Otherwise, it will not be saved to FLASH

memory.

StopRec() Stops recording the track information.

GetRecStatus(Status)

Gets the track recording status and saves in variable

Status.

0: not recording, either not started yet or finished.

1: recording in progress and Start Mark not yet

detected.

2: recording in progress, and has past Start Mark.

GetSecLen(Num, LengthL,

LengthR)

Gets the traveled length of the left and right wheel in

section Num, ranging from 0 ~ 255 and stores the

lengths in variable LengthL and LengthR ranging from

0 ~ 4294967295. The length is expressed in

tachometer counts as the unit.

GetSecCnt(Cnt)
Gets the curve change mark counts and stores in

variable Cnt, ranging from 0 ~ 255.

GetCurSecTach(LengthL,

LengthR)

Gets the traveled length of the left and right wheel of

current section and stores the lengths in variable

LengthL and LengthR ranging from 0 ~ 4294967295.

12

The length is expressed in tachometer counts as the

unit. Note that this command takes effect if track

recording mode is activated.

GetTotalLen(LengthL,

LengthR)

Gets the up-to-now total traveled length of the left

and right wheel and stores the lengths in variable

LengthL and LengthR ranging from 0 ~ 4294967295.

The length is expressed with tachometer counts as the

unit. Note that this command takes effect if track

recording mode is activated.

Accelerometer and Gyroscope Commands

GetAyGz(Ay, Gz)

Gets the current y-axial acceleration value and z-axial

gyroscope value, ranging from -2048 ~ 2047 and

stores them in variables Ay and Gz.

GetSecMaxAyGz(Num, Ay, Gz)

Gets the maximum y-axial acceleration value and

maximum z-axial gyroscope value of the section

specified by Num and stores the values in variables Ay

and Gz. The value of Num ranges from 0 ~ 255 and the

values of Ay and Gz range from -2048 ~ 2047.

GetSecAvgAyGz(Num, Ay, Gz)

Gets the average y-axial acceleration value and

maximum z-axial gyroscope value of the section

specified by Num and stores the values in variables Ay

and Gz. The value of Num ranges from 0 ~ 255 and the

values of Ay and Gz range from -2048 ~ 2047.

SensorCal()
Sets the current y-axial acceleration value and z-axial

gyroscope value as their calibration values.

Load0AyGz(Ay, Gz)

Gets the calibration values of y-axial acceleration

value and z-axial gyroscope value and stores them in

variable Ay and Gz, value range from -2048 ~ 2047.

Miscellaneous Commands

SetOutsideMode(Mode)
Sets the run-away behavior by variable Mode. Value 0:

keeps running; value 1: stops; value 2: brakes.

SetLineColor(Color)
Sets the track color by variable Color. Value 0 (the

default value) for white and 1 for black color.

BuzzerOn() Activates buzzer to beep for 0.1s.

AutoBeep(Mode)

Activates the auto-beeping function by Mode when a

curvature change mark is detected. Default value is 0.

0: deactivates auto-beeping function

1: activates auto-beeping function

13

The beep sound lasts for 0.1s each time.

SetCrossCount(Count)

Sets the cross distance in Count, ranging from 0~255.

When an intersection is encountered, left and right IR

sensors sense the track with a time difference. This

command helps you assign a distance, within which

the intersection will not be mistaken as a curve

change mark or a Start/Goal mark. Every 3 counts is

about 1mm in distance.

LowBatteryAlarmOn() Turns on low battery alarm function.

LowBatteryAlarmOff() Turns off low battery alarm function.

Status = CheckLowBattery()

Checks battery status and returns its status to variable

Status. If battery voltage is low, value 1 will be

retuned, otherwise value 0 will be returned.

Status =GetButton0State()

Status =GetButton1State()

Status =GetButton2State()

Status =GetButton3State()

Gets Button 0, Button 1, Button 2 or Button 3 and

returns its status to variable Status. If button is

pressed, 0 will be returned. If button is not pressed, 1

will be returned.

LedOn() Turns on all LEDs.

Led0On()

Led1On()

Led2On()

Led3On()

Turns on LED0, LED1, LED2 or LED3.

LedOff() Turns off all LEDs.

Led0Off ()

Led1Off ()

Led2Off ()

Led3Off ()

Turns off LED0, LED1, LED2 or LED3.

14

Appendix A --- Tutorial Programs

To help you be familiar with the InnoRacer
TM

2S, some tutorial programs with brief

introduction are provided in this section. To maintain the tutorial programs free of

error and up-to-date, they are subject to change without notice.

For new users, who are not familiar with the BASIC Commander®, please refer

to the “ArminnoTM User's Manual” for more detailed information.

Ex. 1 --- Blinking an LED

This program gives the basics of lighting an LED. There are 4 LEDs on the InnoRacer
TM

2S board, namely Led0, Led1, Led2 and Led3. They can be controlled via

microcontroller I/O pins: PC0, PC1, PC2 and PC3. The following example shows how

to use the Led0On() and Led0Off() commands to control the Led0 to blink.

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

int main(void)

{

 while(1) //infinite loop

 {

 myRacer.Led0On(); //turn on LED 0

 Pause(5000); //wait 0.5 sec.

 myRacer.Led0Off(); //turn off LED 0

 Pause(5000); //wait 0.5 sec.

 }

}

15

Ex. 2 --- Light LED If Button Pressed

In addition to the 4 LEDs, there are also 4 buttons on the InnoRacer
TM

 2S board, they

can be accessed via microcontroller I/O pins: PC4, PC5, PC6 and PC7. The following

example shows how to use the GetButton0State() command to detect the Button0

status. If Button0 is pressed, use Led0On() command to turn on Led0, otherwise use

Led0Off() commands to turn off Led0.

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

int main(void)

{

 while(1) //infinite loop

 {

 if(myRacer.GetButton0State()==0) //check Button0 status

 myRacer.Led0On(); //turn on LED0 if key pressed

 else

 myRacer.Led0Off(); //turn off LED0 if key not pressed

 }

}

Ex. 3 --- Motor Speed Control

There are two DC motors on the InnoRacer
TM

 2S board. This program shows how to

control the DC motors with the speed control commands of the InnoRacer
TM

 2S

library. To prevent the InnoRacerTM 2S from running away, keep it off the ground

when executing the program.

 To input speed parameters in this program, point the cursor to the Serial

Window and key in two speed parameters and your input values will be displayed in

the Serial Window.

Note that the DC motor electric brush wears out when spinning against the

mechanical parts, the DC motors lifetime is limited. Running at a high speed for a

long time will further shorten the life of the DC motors.

16

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

int main(void)

{

 int iVelL,iVelR; //left and right motor speed variables

 while(1)

 {

 printf("\033[J\n"); //clear window

 printf("Please enter the value of iVelL and iVelR... \n");

 scanf("%d%d",&iVelL,&iVelR); //scan speed parameters

 printf("L:%d R:%d\n",iVelL,iVelR); //display values

 myRacer.SetVelLR(iVelL,iVelR); //set speed

 printf("\nPress Any Key to Stop...\n");

 scanf("%d",&iVelR); //scan for any key input

 myRacer.BrakeDual(); //stop both motors

 }

}

Ex. 4 --- Get Infrared Detection Values

There are total 8 infrared sensors used by the InnoRacer
TM

 2S. Five of them are used

to detect the position of the track. One on the right-hand side is used to detect the

Start and Goal mark and two on the left-hand side are used to detect the curve

change marks. This program shows how to read the infrared detection results and

displays them in the Serial Window.

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

int main(void)

{

 unsigned char bIR,i;

17

 while(1)

 {

 myRacer.GetIr(bIR); //get IR values

 printf("\033[0;0f IR:"); //move cursor to position 0,0

 for (i=0;i<8;i++)

 {

 printf("%d",bIR&1); //display in binary format

 bIR>>=1;

 }

 }

}

Ex. 5 --- Tracking with 3 Infrared Sensors

There are 5 infrared sensors on the InnoRacer
TM

2S, which can be used to detect the

position of the track. This program starts with an easier way to detect the track by

using the middle 3 of them. The error values are for tutorial purpose only. You may

try to find your own error values as the feedback for better tracking performance.

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

const short sErrSet[]={-200,-80,-40,0,40,80,200}; // error table

const short Normal_Speed_R = 220; // mid speed of right motor

const short Normal_Speed_L = 220; // mid speed of left motor

int main(void)

{

 unsigned char bIR;

 short R,L,Err;

 while(1)

 {

 myRacer.GetIr(bIR); //get IR values

 bIR>>=1;

 //select the error value according to the track position

18

 switch (bIR&0x07)

 {

 case (2): //010, track under the middle sensor

 Err = sErrSet[3];

 break;

 case (6): //011, track under the middle and right sensor

 Err = sErrSet[4];

 break;

 case (4): //001, track under the right sensor

 Err = sErrSet[5];

 break;

 case (3): //110, track under the middle and left sensor

 Err = sErrSet[2];

 break;

 case (1): //100, track under the left sensor

 Err = sErrSet[1];

 break;

 case (0): //000, off road, select large error for recovery

 if(Err<0)

 Err = sErrSet[0];

 else if (Err>0)

 Err = sErrSet[6];

 break;

 }

 R = Normal_Speed_R - Err;

 L = Normal_Speed_L + Err;

 myRacer.SetVelLR(L,R); //adjust motors speeds

 }

}

Ex. 6 --- Tracking with 5 Infrared Sensors

In this program, we use all of the 5 infrared sensors on the InnoRacer
TM

 2S for

tracking. For smaller curve radius, 3 IR sensors might not be enough to follow the line.

In this situation, 5 infrared sensors will be useful. The error values are for tutorial

purpose only. You may try to find your own error values as the feedback for better

tracking performance.

19

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

const short sErrSet[]={-200,-160,-120,-80,-40,0,40,80,120,160,200};

const short Normal_Speed_R = 220; // mid speed of right motor

const short Normal_Speed_L = 220; // mid speed of left motor

int main(void)

{

 unsigned char bIR;

 short R,L,Err;

 while(1)

 {

 myRacer.GetIr(bIR); //get IR values

 //select the error value according to the track position

 switch (bIR&0x1F)

 {

 case (4): //00100, track under the middle sensor

 Err = sErrSet[5];

 break;

 case (12): //00110

 Err = sErrSet[6];

 break;

 case (8): //00010

 Err = sErrSet[7];

 break;

 case (24): //00011

 Err = sErrSet[8];

 break;

 case (16): //00001

 Err = sErrSet[9];

 break;

 case (6): //01100

 Err = sErrSet[4];

 break;

 case (2): //01000

 Err = sErrSet[3];

20

 break;

 case (3): //11000

 Err = sErrSet[2];

 break;

 case (1): //10000

 Err = sErrSet[1];

 break;

 case (0): //000, off road, select large error for recovery

 if(Err<0)

 Err = sErrSet[0];

 else if (Err>0)

 Err = sErrSet[10];

 break;

 }

 R = Normal_Speed_R - Err;

 L = Normal_Speed_L + Err;

 myRacer.SetVelLR(L,R); //adjust motors speeds

 }

}

Ex. 7 --- PID Control Basics

This program shows how to employ the PID control on the InnoRacer
TM

 2S. The PID

parameters given in this program are just for tutorial purpose only. You may find your

own PID parameters for different track conditions by trial and error.

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

// error table

const short sErrSet[]={-200,-160,-120,-80,-40,0,40,80,120,160,200};

const short Normal_Speed_R = 220; // mid speed of right motor

const short Normal_Speed_L = 220; // mid speed of left motor

//PID parameters

const char SCALE = 0;

21

const char kP = 1;

const char kI = 0;

const char kD = 10;

int main(void)

{

 unsigned char bIR;

 short R,L,Err,PreErr,Integral,Derivative,Out,Control;

 //infinite loop, detecting track and adjust motors accordingly

 while(1)

 {

 myRacer.GetIr(bIR); //get IR values

 //select error according to the track position

 switch (bIR&0x1F)

 {

 case (4): //00100

 Err = sErrSet[5];

 break;

 case (12): //00110

 Err = sErrSet[6];

 break;

 case (8): //00010

 Err = sErrSet[7];

 break;

 case (24): //00011

 Err = sErrSet[8];

 break;

 case (16): //00001

 Err = sErrSet[9];

 break;

 case (6): //01100

 Err = sErrSet[4];

 break;

 case (2): //01000

 Err = sErrSet[3];

 break;

22

 case (3): //11000

 Err = sErrSet[2];

 break;

 case (1): //10000

 Err = sErrSet[1];

 break;

 case (0): //000, off road, select large error for recovery

 if(Err<0)

 Err = sErrSet[0];

 else if (Err>0)

 Err = sErrSet[10];

 break;

 }

 //PID calculation

 Integral = Integral + Err;

 Derivative = Err - PreErr;

 Out = (kP*Err)+(kI*Integral)+(kD*Derivative);

 PreErr = Err;

 Control = Out>>SCALE;

 //change motors speeds according to PID calculation

 R = Normal_Speed_R - Control;

 L = Normal_Speed_L + Control;

 // limit check

 if (R>1024)

 {

 R = 1024;

 }

 else if (R<-1024)

 {

 R = -1024;

 }

 if (L>1024)

 {

 L = 1024;

 }

23

 else if (L<-1024)

 {

 L = -1024;

 }

 myRacer.SetVelLR(L,R); //adjust motors speeds

 }

}

Ex. 8 --- PID Control (Digital Mode)

We practice the PID control in the previous program and now we start to use the

unique built-in PID control functions. There are two modes available, one is the

digital mode, which interprets all the infrared reflection intensity values as logic 0 or

1 and the other is the analog mode, which interprets all the infrared reflection

intensity values as analog values with wider range. Let’s start with the digital mode

first.

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

#define FREQ_CTRL 4

const short NORMAL_SPEED_L = 130;

const short NORMAL_SPEED_R = 130;

const short kP=22;

const short kI=0;

const short kD=240;

// Error values

#define PID_SCALAR 4

const short sStrErr[]={18,30,48,78,126,144,330,534};

// module initialization

void Init(void)

{

24

 // set PID values

 myRacer.SetCtrlFreq(FREQ_CTRL);

 myRacer.SetP(kP);

 myRacer.SetI(kI);

 myRacer.SetD(kD);

 myRacer.SetScalar(PID_SCALAR);

 // set error values

 myRacer.SetErrScale(sStrErr[0], sStrErr[1], sStrErr[2], sStrErr[3],

sStrErr[4], sStrErr[5], sStrErr[6], sStrErr[7]);

// set the mid speed

 myRacer.SetStraight(NORMAL_SPEED_L,NORMAL_SPEED_R);

// set the Digital mode

 myRacer.SetIrMode(0);

// set the track color

 myRacer.SetLineColor(0);

 //set motor dead zone

 myRacer.SetMotorDeadZone(136);

}

int main(void)

{

 unsigned char bIR ;

 Init();

 do {

 myRacer.GetIr(bIR);

 } while((bIR & 0x04) == 0x00); //check if in central position

 myRacer.BuzzerOn();

 Pause(20000);

 myRacer.SpdCtrlOn(0); //enable PID control

 while(1); //infinite loop

}

25

Ex. 9 --- PID Control (Analog Mode)

As mentioned in the previous example, there are two modes available, one is the

digital mode, which interprets all the infrared reflection intensity values as logic 0 or

1 and the other is the analog mode, which interprets all the infrared reflection

intensity values as analog values with wider range. Now we try the analog mode,

which has a better resolution in locating the track. Let’s check it out!

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

#define FREQ_CTRL 4

const short NORMAL_SPEED_L = 130;

const short NORMAL_SPEED_R = 130;

const short kP=22;

const short kI=0;

const short kD=240;

// Error values

#define PID_SCALAR 4

const short sStrErr[]={18,30,48,78,126,144,330,534};

// module initialization

void Init(void)

{

 // set PID values

 myRacer.SetCtrlFreq(FREQ_CTRL);

 myRacer.SetP(kP);

 myRacer.SetI(kI);

 myRacer.SetD(kD);

 myRacer.SetScalar(PID_SCALAR);

 // set error values

 myRacer.SetErrScale(sStrErr[0], sStrErr[1], sStrErr[2], sStrErr[3],

sStrErr[4], sStrErr[5], sStrErr[6], sStrErr[7]);

// set the mid speed

 myRacer.SetStraight(NORMAL_SPEED_L,NORMAL_SPEED_R);

26

// set the Analog mode

 myRacer.SetIrMode(1);

// set the track color

 myRacer.SetLineColor(0);

 //set motor dead zone

 myRacer.SetMotorDeadZone(136);

}

int main(void)

{

 unsigned char bIR ;

 Init();

 do {

 myRacer.GetIr(bIR);

 } while((bIR & 0x04) == 0x00); //check if in central position

 myRacer.BuzzerOn();

 Pause(20000);

 myRacer.SpdCtrlOn(0); //enable PID control

 while(1); //infinite loop

}

Ex. 10 --- Using Gyroscope and Accelerometer

There is a gyro and two-axis accelerometer built-in on the InnoRacer
TM

 2S, which are

used to sense the dynamic parameters. However, when running on the track,

accelerometer in x direction is not used, in this program, we learn how to access

accelerometer in y direction and gyro value on the z-axis.

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

short AccY, GyroZ;

int main(void)

{

 while(1)

27

 {

 myRacer.GetAyGz(AccY, GyroZ); //get Acc in Y and gyro in z

 printf("\033[0;0f Accelerometer Y:"); //move cursor to 0,0

 printf("%d", AccY);

 printf(" Gyro Z:");

 printf("%d", GyroZ);

 printf("\033[K"); //clear to end of line

 }

}

Ex. 11 --- Route Memorization

Route memorization is an important feature for InnoRacer
TM

2S, so it can run as fast

as possible on all route sections. This program shows how to record the track

information.

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

#define FREQ_CTRL 4

#define CROSS_COUNT 14 // intersection bias

const short NORMAL_SPEED_L = 130;

const short NORMAL_SPEED_R = 130;

//--

// set PID values

//--

const short kP=22;

const short kI=0;

const short kD=240;

//--

// set error values

//--

#define PID_SCALAR 4

28

const short sStrErr[]={18,30,48,78,126,144,330,534};

unsigned char bStatus;

unsigned char bIR;

//--

// module initialization

//--

void Init(void)

{

 //set PID values

 myRacer.SetCtrlFreq(FREQ_CTRL);

 myRacer.SetP(kP);

 myRacer.SetI(kI);

 myRacer.SetD(kD);

 myRacer.SetScalar(PID_SCALAR);

 myRacer.SetStraight(NORMAL_SPEED_L,NORMAL_SPEED_R);

 myRacer.SetIrMode(1);

 //set error values

 myRacer.SetErrScale(sStrErr[0], sStrErr[1], sStrErr[2], sStrErr[3],

sStrErr[4], sStrErr[5], sStrErr[6], sStrErr[7]);

 myRacer.SetCrossCount(CROSS_COUNT); //set intersection bias

 //set motor dead zone

 myRacer.SetMotorDeadZone(136);

}

int main(void)

{

 Init();

 myRacer.AutoBeep(1); //enable auto beep

 //check if in central position

 do {

 myRacer.GetIr(bIR);

 } while((bIR & 0x04) == 0x00);

 myRacer.BuzzerOn();

 Pause(20000);

29

 myRacer.StartRec(1); //enable route recording

 //check if route recording started?

 do {

 myRacer.GetRecStatus(bStatus);

 } while(bStatus != 1);

 //start PID control

 myRacer.SpdCtrlOn(0);

 //check if the Start mark is detected?

 do {

 myRacer.GetRecStatus(bStatus);

 } while (bStatus != 2);

 //check if the Goal mark is detected?

 do {

 myRacer.GetRecStatus(bStatus);

 } while(bStatus != 0);

 //stop route recording

 myRacer.StopRec();

 myRacer.StopDual();

}

Ex. 12 --- Retrieving Route Information

In previous exercise, we recorded all the sections of route information. In this

program, we display all the sections of route information in the Debug Window. If

you encounter a route memorization problem, this is a very useful debug tool to

identify where the problem is.

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

30

int main(void)

{

 unsigned char SecCnt;

 short L, R, MaxAcc, AvgAcc, MaxGyro, AvgGyro;

 myRacer.GetTotalSecCnt(SecCnt); //¨get total section number

 printf("Count = %d\r\n", SecCnt);

 printf(" \t L \t R \tMaxAcc\tAvgAcc\tMaxGyro\tAvgGyro\r\n");

 //read information sequentially

 for(unsigned char i = 0 ; i < SecCnt ; i++) {

 myRacer.GetSecLen(i, L, R);

 myRacer.GetSecMaxAyGz(i, MaxAcc, MaxGyro);

 myRacer.GetSecAvgAyGz(i, AvgAcc, AvgGyro);

 printf("%3d\t%4d\t%4d\t%6d\t%6d\t%6d\t%6d\r\n", i, L, R, MaxAcc,

AvgAcc, MaxGyro, AvgGyro);

 }

}

Ex. 13 --- Acceleration

We know how to record the information of all the sections of the route. Now we can

start to use this information to speed up our InnoRacer
TM

 2S. There are many

different approaches or strategies to speed up the InnoRacer
TM

 2S. In this program,

we learn the basics of acceleration according to the route information. The

InnoRacer
TM

 2S starts to accelerate after the Start mark is detected and stops.

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

#define FREQ_CTRL 4

#define CROSS_COUNT 14 // intersection bias

#define STOP_TACH 100

const short NORMAL_SPEED_L = 130;

31

const short NORMAL_SPEED_R = 130;

const short CRAZY_SPEED_L = 150;

const short CRAZY_SPEED_R = 150;

//--

// set PID values

//--

const short kP=22;

const short kI=0;

const short kD=240;

//--

// set error values

//--

#define PID_SCALAR 4

const short sStrErr[]={18,30,48,78,126,144,330,534};

unsigned char bStatus;

unsigned char bIR;

unsigned short LenL,LenR;

//--

// module initialization

//--

void Init(void)

{

 //set PID values

 myRacer.SetCtrlFreq(FREQ_CTRL);

 myRacer.SetP(kP);

 myRacer.SetI(kI);

 myRacer.SetD(kD);

 myRacer.SetScalar(PID_SCALAR);

 // set the mid speed

 myRacer.SetStraight(NORMAL_SPEED_L,NORMAL_SPEED_R);

// set the Analog mode

 myRacer.SetIrMode(1);

//set error values

 myRacer.SetErrScale(sStrErr[0], sStrErr[1], sStrErr[2], sStrErr[3],

32

sStrErr[4], sStrErr[5], sStrErr[6], sStrErr[7]);

 myRacer.SetCrossCount(CROSS_COUNT);

 //set motor dead zone

 myRacer.SetMotorDeadZone(136);

}

int main(void)

{

 Init();

 myRacer.AutoBeep(1); //enable auto beep

 //check if in central position

 do {

 myRacer.GetIr(bIR);

 } while((bIR & 0x04) == 0x00);

 myRacer.BuzzerOn();

 Pause(20000);

 myRacer.StartRec(1); // analog mode

 //check if route recording started?

 do {

 myRacer.GetRecStatus(bStatus);

 } while(bStatus != 1);

 myRacer.SpdCtrlOn(0); //enable PID control

 // check if Goal mark is detected?

 do {

 myRacer.GetRecStatus(bStatus);

 } while (bStatus != 2);

 // set higher speed

 myRacer.SetStraight(CRAZY_SPEED_L,CRAZY_SPEED_R);

 do{

 myRacer.GetTotalLen(LenL,LenR);

 }while(LenL < STOP_TACH);

33

 //stop route recording

 myRacer.StopRec();

 myRacer.StopDual();

}

Ex. 14 --- Ready to Go

Finally, we add more functions in this program. By pressing button 0 to select

recording mode, InnoRacer
TM

 2S will execute route memorization run. After the

route is successfully recorded, press button 1 and InnoRacer
TM

 2S will execute racing

run. If you encounter problem during the runs, connect InnoRacer
TM

 2S to your

development environment and press button 2 to display all the route records for

your analysis. Now you are almost ready to put your InnoRacer
TM

 2S line follower on

the racing course to compete. After learning all the basics required, try to develop

your own racing strategies and have fun!

#include "arminno.h"

#include "innoRacer2.h"

innoRacer2 myRacer;

#define FREQ_CTRL 4

#define CROSS_COUNT 4 // intersection bias

const short NORMAL_SPEED_L = 130;

const short NORMAL_SPEED_R = 130;

const short CRAZY_SPEED_L = 400;

const short CRAZY_SPEED_R = 400;

const short STOP_SPEED_L = 0;

const short STOP_SPEED_R = 0;

const short kP=22;

const short kI=0;

const short kD=240;

34

const float StopLevel = 3;

const short soffset = 136;

//--

// set error values

//--

#define PID_SCALAR 4

const short sStrErr[]={18,30,48,78,126,144,330,534};

//--

// Accelerating parameters

//--

const short STOP_TACH = 200;

const short ACC_TACH = 50;

const short HOLD_STOP = 100;

const short ACC_G = 100;

unsigned char bStatus;

unsigned char bIR;

unsigned char bCnt, bNxtCnt, bLevel;

short iAy, iGz;

short wSecLenL, wSecLenR, wStopLen,wPreLen;

short wCurCntL, wCurCntR;

//--

// module initialization

//--

void Init(void)

{

 //set PID values

 myRacer.SetCtrlFreq(FREQ_CTRL);

 myRacer.SetP(kP);

 myRacer.SetI(kI);

 myRacer.SetD(kD);

 myRacer.SetScalar(PID_SCALAR);

 myRacer.SetOutsideMode(1);

 // set error values

35

 myRacer.SetErrScale(sStrErr[0], sStrErr[1], sStrErr[2], sStrErr[3],

sStrErr[4], sStrErr[5], sStrErr[6], sStrErr[7]);

 //set speed related values

 myRacer.SetStraight(NORMAL_SPEED_L,NORMAL_SPEED_R);

 myRacer.SetCrossCount(CROSS_COUNT);

 myRacer.SetIrMode(1);

 myRacer.SetIrMask(1);

 myRacer.SetLineColor(0);

 myRacer. SetMotorDeadZone(soffset);

}

//--

// route recording function

//--

void REC_ROUTE(void)

{

 myRacer.AutoBeep(1); //enable auto beep

 //check if in central position

 do {

 myRacer.GetIr(bIR);

 } while((bIR & 0x04) == 0x00);

 myRacer.BuzzerOn();

 Pause(20000);

 myRacer.StartRec(1); // analog mode

 //check if route recording started?

 do {

 myRacer.GetRecStatus(bStatus);

 } while(bStatus != 1);

 myRacer.SpdCtrlOn(0); //enable PID control

 // check if Goal mark is detected?

36

 do {

 myRacer.GetRecStatus(bStatus);

 } while (bStatus != 2);

 // check if Goal mark is detected?

 do {

 myRacer.GetRecStatus(bStatus);

 } while(bStatus != 0);

 //stop route recording

 myRacer.StopRec();

 Pause(3000);

 myRacer.StopDual();

}

void CheckCount(short wTarCntL)

{

 short wCurCntL, wCurCntR;

 do {

 myRacer.GetCurSecTach(wCurCntL, wCurCntR);

 } while(wCurCntL < wTarCntL);

}

//--

// racing function

//--

void RACE_ROUTE(void)

{

 short SecLen[256], AvgG[256];

 unsigned char Cnt,bCrazy;

 //check if in central position

 do {

 myRacer.GetIr(bIR);

 } while((bIR & 0x04) == 0x00);

 myRacer.BuzzerOn();

 Pause(20000);

37

 bCnt = 0;

 bNxtCnt = 0;

 wStopLen = 0;

 bCrazy = 0;

 myRacer.GetSecAvgAyGz(bNxtCnt, iAy, iGz);

 myRacer.GetSecLen(bNxtCnt, wSecLenL, wSecLenR);

 myRacer.AutoBeep(0);

 myRacer.StartRec(0);

 //check if route recording started?

 do {

 myRacer.GetRecStatus(bStatus);

 } while(bStatus != 1);

 myRacer.SetStraight(NORMAL_SPEED_L,NORMAL_SPEED_R);

 myRacer.SpdCtrlOn(0);

 // check if Goal mark is detected?

 do {

 myRacer.GetRecStatus(bStatus);

 } while(bStatus != 2);

 // ¨check straight route to use high speed

 do {

 myRacer.GetSecCnt(bCnt);

 if (bNxtCnt==bCnt)

 {

 bNxtCnt ++;

 if((iAy < ACC_G) && (iAy > -ACC_G) && (wStopLen > 0))

 {

 myRacer.SetStraight(CRAZY_SPEED_L,CRAZY_SPEED_R);

 CheckCount(wStopLen);

 myRacer.SetStraight(STOP_SPEED_L,STOP_SPEED_R);

 Pause(HOLD_STOP);

 myRacer.SetStraight(NORMAL_SPEED_L,NORMAL_SPEED_R);

38

 }

 myRacer.GetSecAvgAyGz(bNxtCnt, iAy, iGz);

 myRacer.GetSecLen(bNxtCnt, wSecLenL, wSecLenR);

 if (wSecLenL >ACC_TACH)

 {

 wStopLen = wSecLenL - STOP_TACH;

 }

 else

 {

 wStopLen = 0;

 }

 }

 myRacer.GetRecStatus(bStatus);

 } while(bStatus != 0);

 Pause(1500);

 myRacer.BrakeDual();

}

void PrintData()

{

 unsigned char SecCnt;

 short L, R, MaxAcc, AvgAcc, MaxGyro, AvgGyro;

 myRacer.GetTotalSecCnt(SecCnt);

printf("Count = %d\r\n", SecCnt);

 printf(" \t L \t R \tMaxAcc\tAvgAcc\tMaxGyro\tAvgGyro\r\n");

 for(unsigned char i = 0 ; i < SecCnt ; i++)

 {

 myRacer.GetSecLen(i, L, R);

 myRacer.GetSecMaxAyGz(i, MaxAcc, MaxGyro);

 myRacer.GetSecAvgAyGz(i, AvgAcc, AvgGyro);

 printf("%3d\t%4d\t%4d\t%6d\t%6d\t%6d\t%6d\r\n", i, L, R,

MaxAcc, AvgAcc, MaxGyro, AvgGyro);

 }

}

int main(void)

39

{

 for(int i = 0 ; i < 3 ;i++) {

 myRacer.LedOn();

 Pause(2000);

 myRacer.LedOff();

 Pause(2000);

 }

 Init();

 while(1) {

 //check if button is pressed

 if(myRacer.GetButton0State() == 0) {

 myRacer.Led0On();

 REC_ROUTE();

 myRacer.LedOff();

 }

 else if(myRacer.GetButton1State() == 0) {

 myRacer.Led1On();

 RACE_ROUTE();

 myRacer.LedOff();

 }

 else if(myRacer.GetButton2State() == 0) {

 myRacer.Led2On();

 PrintData();

 myRacer.Led2Off();

 }

 }

}

40

Appendix B --- Sample Course

This is a sample course with a minimum curvature of 10cm. The actual size is 180 cm

x 400 cm. There could be different racing games with similar rules. Refer to their

official document and modify the course and program accordingly.

