

Servo Commander™ 8

User’s Guide
Document Rev 1.0

Mar. 7, 2011

1

Trademark

Innovati®, , and BASIC Commander® are registered trademarks of Innovati, Inc.

InnoBASIC™, cmdBUS™ and Servo Commander
™

 are trademarks of Innovati, Inc.

Copyright © 2011 by Innovati, Inc. All Rights Reserved.

Due to continual product improvements, Innovati reserves the right to make modifications to its products without prior

notice. Innovati does not recommend the use of its products for application that may present a risk to human life due

to malfunction or otherwise.

No part of this publication may be reproduced or transmitted in any form or by any means without the expressed

written permission of Innovati, Inc.

Disclaimer

Full responsibility for any applications using Innovati products rests firmly with the user and as such Innovati will not be

held responsible for any damages that may occur when using Innovati products. This includes damage to equipment or

property, personal damage to life or health, damage caused by loss of profits, goodwill or otherwise. Innovati products

should not be used for any life saving applications as Innovati’s products are designed for experimental or prototyping

purposes only. Innovati is not responsible for any safety, communication or other related regulations. It is advised that

children under the age of 14 should only conduct experiments under parental or adult supervision.

Errata

We hope that our users will find this user’s guide a useful, easy to use and interesting publication, as our efforts to do

this have been considerable. Additionally, a substantial amount of effort has been put into this user’s guide to ensure

accuracy and complete and error free content, however it is almost inevitable that certain errors may have remained

undetected. As Innovati will continue to improve the accuracy of its user’s guide, any detected errors will be published

on its website. If you find any errors in the user’s guide, please contact us via email service@innovati.com.tw. For the

most up-to-date information, please visit our web site at http://www.innovati.com.tw.

2

Table of Contents

Product Overview ………………………………………..………….………….……………… 3

Product Features …………………………………………….……………...………….……… 3

Applications ……..................…………………….……….........…….....….….………… 3

Product Specifications …..................…………………….………...........…………… 4

Servo Connection………………………….……….........……...….….…………… 5

Precautions for Operations…………….……….........……...….….…………… 5

Absolute Maximum Ratings…………….……….........…….....…..…………… 6

Command Set …........................….............….............….............…............. 6

Appendix A --- Tutorial Programs

� Ex. 1 --- Control Servo Movement by Frames …………………………….….. 11

� Ex. 2 --- Control Servo Movement by Commands …………..…..…….….. 12

3

Product Overview

Innovati’s Servo Commander
TM

 8 (SC8) module incorporates the BASIC Commander® and

a ServoRunner8 module with 8 general purpose I/Os controlling up to 8 servos

simultaneously. The simple and integrated software functions enable users to directly

control the servo movement by fixed speed or common time. There are up to 60 frames

for storing the positions and motion configurations (speed or time), thus various ways of

motions can be achieved through the combinations of actions.

Note that this manual mainly describes the functionality of the servo control. For

details of the BASIC Commander® system and usage of the innoBASIC™ language, please

refer to “BASIC Commander & innoBASIC Workshop User’s Manual.”

Product Features

� Using the BASIC Commander® as controller, users can modify their program and

download to the Servo Commander
TM

8 board via a USB cable.

� Built-in ServoRunner8 cmdBUS™ module with ID number 0.

� CmdBUS™ connector for additional Innovati’s Smart Peripheral modules.

� Capable of controlling up to 8 servos for position ranging from 0.5 ms to 2.5 ms with

2μs resolution.

� Software fine-tune commands in the range of -128~127 μs.

� A maximum of 60 frames to store the positions, speeds or the time parameters up to

8 servos.

� 4 events available notifying the completion of servo travel

� Module Dimensions: 46.8 mm x 54.8 mm

Applications

� Up to 8 Degree of Freedom RC servo applications

� Up to 8 General-purpose digital I/Os applications

� Up to 32 CmdBUS™ smart modules applications

� Combination of above applications

4

Product Specifications

Fig. 1 Servo Commander™ 8

Item Description

1 Eight Servo Connectors numbering from 0 through 7. Please check the pin

label on the board, incorrect servo pin insertion may cause device damages.

2 6~12V Power input: It will be regulated to 5V for the electronics on the board

and unregulated for direct servo power use. Make sure the input voltage

range is within the servo input voltage rating, otherwise the servos will be

easily damaged.

3 A cmdBUS™ connector for other Innovati’s Smart module connection.

Please check the label on board when connecting the cmdBUS cable,

incorrect insertion may damage the modules.

4 Same as item 2. May be used as power input or output pins.

5 Regulated 5V 200mA output pin and ground pin for power in your

application.

6 Eight general-purpose digital I/Os with labeled pin numbers on the board.

Through the built-in software commands, they can be used as I2C or UART

pins.

7 Red LED will be lit when power is on.

8 Yellow LED will be lit when Master/Slave is in communication.

9 Green LED will be lit when USB is in communication.

10 Mini USB connector: via a USB cable connecting to computer for

5

downloading and debugging programs.

11 RESET Button. To restart the program while the program is in

execution. Note that it is prohibited to press this button during

downloading, which will result in download failure.

Table 1 Servo Commander™ 8 Description

Servo Connection

The module has 8 servo connectors with 3 pins for each connector. The servo connectors

provide power and control signals to the servos, and are placed in two groups labeled 0

through 3 and 4 through 7. To control the servos, connect the proper pins from of servo’s

connector cable to these connectors. The power supply connection is shown in Figures 2.

Before connecting the power, please check the servo operating voltage and current

ratings to avoid damages to the servos.

Fig. 2 Servo and power connection

Precautions for Operations

Please make sure of the voltage and current ranges required for the servos before connecting

them. Select a suitable power supply and connect correctly to the Vser.

The Pulse pins of the servos should be connected to the module in a way complying with the

Connectors for

the Servos

6~12V power

supply.

6

requirements shown in Table 2.

Symbol Parameter Test Conditions Min. Typ. Max. Unit

VOH I/O Output High Voltage No Load - 5 - V

VOL I/O Output Low Voltage No Load - 0 - V

IOL I/O Sink Current VLOAD=0.1VOH 10 20 - mA

IOH I/O Source Current VLOAD=0.9VOH -5 -10 - mA

INL Operating Current No Servo Connected - 33 - mA

Table 2 DC Characteristics (VIN=7.5V, Ta=25°C)

Absolute Maximum Ratings

Operating Temperature of the Module: 0 °C ~ 70 °C

Storage Temperature of the Module: -50 °C ~ 125 °C

Please check servo manufacturer’s related datasheets for their servo’s absolute

maximum ratings.

Command Set

The following table lists all the unique commands provided with the ServoRunner8

Module. Note that essential words in the commands will be written in bold type and

italics in bold type. The bold type word must be written exactly as shown, whereas the

italic bold type words must be replaced with the user values. Note that the innoBASIC™

language is case-insensitive.

To execute functions related to ServoRunner8 module, please declare the module ID

number as 0 in the program, i.e. Peripheral ModuleName As ServoRunner8A @ 0

Command Syntax Description

Servo Position Commands

SetPos (ID, Pos)

Sets the servo with ID, ranging from 0 to 7, for

operation. The target position is set by Pos

ranging from 499~2500 in μs unit. If the given

value is out of this range, the command will not

7

be executed.

SetPosAndRun(ID, Pos)
Same as command above. Except after settings

are done, the servo will start to move.

SetPosSpd(ID, Pos, Spd)

Sets the servo with ID, ranging from 0 to 7, for

operation. The target position is set by Pos

ranging from 499~2500 in μs unit and traveling

at a speed of Spd ranging 0~65535 with unit

μs/s. The larger the Spd value is, the faster the

servo travels. Note that the Spd with value 0

will be regarded as full speed.

SetPosSpdAndRun(ID, Pos, Spd)
Same as command above. Except after settings

are done, the servo will start to move.

SetPosTime(ID, Pos, Time)

Sets the servo with ID, ranging from 0 to 7, for

operation. The target position is set by Pos

ranging from 499~2500 in μs unit and traveling

to the target position in Time ranging from

0~65535 milliseconds. Note that if the value of

Time is too short, including 0, the servo will

travel at full speed.

SetPosTimeAndRun(ID, Pos, Time)
Same as command above. Except after settings

are done, the servo will start to move.

Servo Start Commands

Run1Servo(ID1)

Run2Servo(ID1, ID2)

Run3Servo(ID1, …, ID3)

Run4Servo(ID1, …, ID4)

Run5Servo(ID1, …, ID5)

Run6Servo(ID1, …, ID6)

Run7Servo(ID1, …, ID7)

RunAllServo()

According to the set value of servo IDs, ranging

from 0 to 7, each corresponding servo will

perform the preset operation. If the servo starts

without the speed or time settings but only the

position setting, the servo will travel at the

maximum speed. If any ID value is out of its

range, this command will not be executed.

Run1ServoWithEventA(ID1)

Run2ServoWithEventA(ID1, ID2)

Run3ServoWithEventA(D1, …, ID3)

Run4ServoWithEventA(D1, …, ID4)

Run5ServoWithEventA(D1, …, ID5)

Run6ServoWithEventA(ID1, …, ID6)

Run7ServoWithEventA(ID1, …, ID7)

RunAllServoWithEventA()

Same as above, except that the event A will be

triggered when all the indicated servos reach

their target positions.

8

Run1ServoWithEventB(ID1)

Run2ServoWithEventB(ID1, ID2)

Run3ServoWithEventB(D1, …, ID3)

Run4ServoWithEventB(D1, …, ID4)

Run5ServoWithEventB(D1, …, ID5)

Run6ServoWithEventB(ID1, …, ID6)

Run7ServoWithEventB(ID1, …, ID7)

RunAllServoWithEventB()

Same as above, except that the event B will be

triggered when all the indicated servos reach

their target positions.

Run1ServoWithEventC(ID1)

Run2ServoWithEventC(ID1, ID2)

Run3ServoWithEventC(D1, …, ID3)

Run4ServoWithEventC(D1, …, ID4)

Run5ServoWithEventC(D1, …, ID5)

Run6ServoWithEventC(ID1, …, ID6)

Run7ServoWithEventC(ID1, …, ID7)

RunAllServoWithEventC()

Same as above, except that the event C will be

triggered when all the indicated servos reach

their target positions.

Run1ServoWithEventD(ID1)

Run2ServoWithEventD(ID1, ID2)

Run3ServoWithEventD(D1, …, ID3)

Run4ServoWithEventD(D1, …, ID4)

Run5ServoWithEventD(D1, …, ID5)

Run6ServoWithEventD(ID1, …, ID6)

Run7ServoWithEventD(ID1, …, ID7)

RunAllServoWithEventD()

Same as above, except that the event D will be

triggered when all the indicated servos reach

their target positions.

Servo Stop Commands

Pause1Servo(ID1)

Pause2Servo(ID1, ID2)

Pause3Servo(ID1, …, ID3)

Pause4Servo(ID1, …, ID4)

Pause5Servo(ID1, …, ID5)

Pause6Servo(ID1, …, ID6)

Pause7Servo(ID1, …, ID7)

PauseAllServo()

According to the set value of servo IDs, ranging

from 0 to 7, each corresponding servo will stop

and hold at the present position. If any ID value

is out of its range, this command will not be

executed.

Stop1Servo(ID1)

Stop2Servo(ID1, ID2)

Stop3Servo(ID1, …, ID3)

Stop4Servo(ID1, …, ID4)

Stop5Servo(ID1, …, ID5)

Same as above, except that the module will

cease sending control signal to the servo. As a

result, the servo will stop but not hold at the

present position. External force might be able

to change its position.

9

Stop6Servo(ID1, …, ID6)

Stop7Servo(ID1, …, ID7)

StopAllServo()

Servo Status and Setting Commands

Get1ServoReadyStatus(ID1, Status)

Get2ServoReadyStatus(ID1, ID2, Status)

Get3ServoReadyStatus(ID1, …, ID3, Status)

Get4ServoReadyStatus(ID1, …, ID4, Status)

Get5ServoReadyStatus(ID1, …, ID5, Status)

Get6ServoReadyStatus(ID1, …, ID6, Status)

Get7ServoReadyStatus(ID1, …, ID7, Status)

GetAllServoReadyStatus(Status)

Gets the operation status of the servo(s)

indicated by IDs, ranging from 0 to 7, and stores

the status in Status. When all the servos reach

their target positions, the returned status will

be 1, otherwise value 0 will be returned.

GetNowPos (ID, Pos) Gets the current position of the servo indicated

by ID, ranging from 0 to 7, and then stores it in

the variable Pos of type Word. Note that the

position returned is an estimated position.

GetPos(ID, Pos) Gets the target position of the servo indicated

by ID, ranging from 0 to 7, and then stores it in

the variable Pos of type Word.

GetPosOffset(ID, Offset) Gets the offset position of the servo indicated

by ID, ranging from 0 to 7, and then stores it in

the variable Offset of type Short, ranging form

-128 to 127 μs.

GetSpdAndTime(ID, Type, Value) Gets the motion type of the servo indicated by

ID, ranging from 0 to 7, and stores the values in

Type. The corresponding setting values are

stored in the variable Value of type Word. If the

servo travel type is set as speed, then the

returned value for Type will be 1. If the servo

travel type is set as time, then the returned

value for Type will be 0.

LoadFrame(FrameID) Loads the servo operation settings from the

frame memory block indicated by FrameID,

ranging from 0 to 59, as the current target

position and motion type of the servos.

LoadOffset() Loads the servo offset settings from EEPROM.

SaveFrame(FrameID) Saves the current settings of servo operations

into the frame indicated by FrameID, ranging

10

from 0 to 59.

SaveOffset() Saves the servo offset settings into EEPROM.

SetPosOffset(ID, Offset) Sets the offset of the servo indicated by ID with

the value Offset, ranging from -128 to 127.

Events Name Description

ServoPosReadyEventA

Executes the RunNServoWithEventA command, where N can be

literally 1~7 or All. When all the indicated servos reach their target

positions, event A will be triggered.

ServoPosReadyEventB

Executes the RunNServoWithEventB command, where N can be

literally 1~7 or All. When all the indicated servos reach their target

positions, event B will be triggered.

ServoPosReadyEventC

Executes the RunNServoWithEventC command, where N can be

literally 1~7 or All. When all the indicated servos reach their target

positions, event C will be triggered.

ServoPosReadyEventD

Executes the RunNServoWithEventD command, where N can be

literally 1~7 or All. When all the indicated servos reach their target

positions, event D will be triggered.

11

Appendix A --- Tutorial Programs

To help you be familiar with the Servo Commander
TM

8 module, some tutorial programs

with brief introduction are provided in this section.

To maintain the tutorial programs free of error and up-to-date, they are subject to

change without notice. For new users, who are not familiar with the BASIC Commander®,

please refer to the “BASIC Commander® and innoBASICTM Workshop User's Manual” for

more detailed information.

Ex. 1 --- Control Servo Movement by Frames

For multiple-servo applications, the related positions of each servo become abstract and

difficult to understand when designing the motion control. To solve this problem, the

frame scheme is the widely employed. This program gives the basics of servo control by

using the frames.

, The frame feature is supported on the Servo Commander
TM

8 module. The

innoBASICTM Workshop provide a software utility called “Motion Editor” which helps you

set up the positions of the servos. You can access this tool from the Tools menu in

innoBASICTM Workshop.

Assuming you have designed three frames with frame ID 0, 1 and 2. The execution

time between each movement is set to 1 second in the frame. Now let’s see how to

invoke the frame in the program. Note that the frame scheme is the easiest and fastest

way to make your multiple-servo applications work.

Peripheral mySer As ServoRunner8A @ 0 ‘ Set the module to 0

Sub Main()

mySer.LoadFrame(0) ‘ load frame 0 data from the EEPROM on the module

mySer.RunAllServo() ‘ let all servos to execute frame 0

Pause 1000 ‘ wait 1 second for servo traveling

mySer.LoadFrame(1) ‘ load frame 1 data from the EEPROM on the module

mySer.RunAllServo() ‘ let all servos travel to frame 1 position

Pause 1000 ‘ wait 1 second for servo traveling

12

mySer.LoadFrame(2) ‘ load frame 2 data from the EEPROM on the module

mySer.RunAllServo() ‘ let all servos to execute frame 2

Pause 1000 ‘wait 1 second for servo traveling

End Sub

The program shown above is very straight forward, which helps you understand how

the frames work intuitively. Nevertheless, you may add your own code in the program to

make it run more efficiently, more flexible motion or function combination.

Ex. 2 --- Control Servo Movement by commands

Instead of using the pre-defined movement frames, you may assign the positions of the

servos at run-time, such as the robot arm application. This program shows the usages of

the basic commands. This program might not be very meaningful in application, but it

shows you the differences among the commands in their performance.

In this example program, the position value is set according to the range of the

majority of the servos. Please adjust the allowed position range for the servos that have a

narrower travel range to avoid the damage to the servos.

Peripheral mySer As ServoRunner8A @ 0 ‘ Set the module to 0

Sub Main()

mySer.SetPosOffset(0, 30) ‘set servo 0 mechanical offset of 30us

mySer.SetPosAndRun(0, 1500) ‘ move servo 0 to position 1500 us

Pause 1000 ‘ pause 1 second for the servo to travel

mySer.SetPos(0, 2200) ‘ set the target position of servo as 2200

mySer.Run1Servo(0) ‘move servo 0 to current settings

Pause 1000 ‘ pause 1 second for the servo to travel

mySer.SetPosSpdAndRun(0, 700, 1000) ‘move to position 700us, at speed 1000us/s

Pause 2000

mySer.SetPosTimeAndRun(0, 2200, 1000) ‘ move to position 2200us in 1 second

End Sub

