

Innoracer™

 User’s Guide
Document Revision 1.4

2010.1.16

1

Trademark

Innovati®, , and BASIC Commander® are registered trademarks of Innovati, Inc.

InnoBASIC™, cmdBUS™ and innoracer
™

are trademarks of Innovati, Inc.

Copyright © 2010-2011 by Innovati, Inc. All Rights Reserved.

Due to continual product improvements, Innovati reserves the right to make modifications to its products

without prior notice. Innovati does not recommend the use of its products for application that may present a risk

to human life due to malfunction or otherwise.

No part of this publication may be reproduced or transmitted in any form or by any means without the expressed

written permission of Innovati, Inc.

Disclaimer

Full responsibility for any applications using Innovati products rests firmly with the user and as such Innovati will

not be held responsible for any damages that may occur when using Innovati products. This includes damage to

equipment or property, personal damage to life or health, damage caused by loss of profits, goodwill or otherwise.

Innovati products should not be used for any life saving applications as Innovati’s products are designed for

experimental or prototyping purposes only. Innovati is not responsible for any safety, communication or other

related regulations. It is advised that children under the age of 14 should only conduct experiments under

parental or adult supervision.

Errata

We hope that our users will find this user’s guide a useful, easy to use and interesting publication, as our efforts

to do this have been considerable. Additionally, a substantial amount of effort has been put into this user’s guide

to ensure accuracy and complete and error free content, however it is almost inevitable that certain errors may

have remained undetected. As Innovati will continue to improve the accuracy of its user’s guide, any detected

errors will be published on its website. If you find any errors in the user’s guide please contact us via email

service@innovati.com.tw. For the most up-to-date information, please visit our web site at

http://www.innovati.com.tw.

2

Notes:

 This package contains a BASIC Commander®

module with instruction on how to use it.

Refer to the instructions for the best performance of the item.

 When you replace the battery pack or external power supply, make sure the input

voltage is between 6 and 12V to avoid damage to the electronic devices.

 There are two DC brush motors, which require a total or 2A current for normal

operation. Insufficient power supply may cause malfunction.

 For a longer testing and operating period, you may use external power supply for the

consistent operation performance.

 Commands for the built-in modules are available only for innoBASIC
™
 Workshop

v2.0.2.9 or later.

3

Table of Contents

Product Overview ………………………………………..………….………….……………… 5

Product Features …………………………………………….……………...………….……… 5

System Diagram …………………………………….……….........……...….….…………… 6

Key Components

� Controller – BASIC Commander® …………………………………….…….……… 7

� Reflective Infrared Sensors ………………………………………...…..……….…… 7

� Infrared Sensor Calibration ………….……....……………………….…..………… 8

� Buzzer …………………………………………..……………………………………………… 8

� DC Motors ………………………………….………….……………..………..….………… 9

� Accelerometer ……………………………………….……………..….……………..…… 9

� Battery Charger ………………………..……………………………..……………..……10

Command Set

� RacerM1 Module Command Set ……………..……….………….…..………….. 11

� RacerP1 Module Command Set ………………………..……….…..…..……..… 15

Appendix A --- Tutorial Programs

� Ex. 1 --- Light the LEDs Sequentially ………………………………………….….. 21

� Ex. 2 --- Light the LEDs If Buttons Pressed ……………………..…..…….….. 21

� Ex. 3 --- Motor Control Using RacerM1 ………………..………………..…….. 23

� Ex. 4 --- Detection with Infrared Sensors …………..……………..………….. 24

� Ex. 5 --- Tracking with 3 Infrared Sensors ……..……………..……………….. 25

� Ex. 6 --- Tracking with 7 Infrared Sensors …..………………..……………….. 26

� Ex. 7 --- Analog Infrared Readings ……………………………….……………….. 29

4

� Ex. 8 --- Normalization Basics …………….………............................…….. 29

� Ex. 9 --- Track Detection Using Polynomial Interpolation …….……….. 30

� Ex. 10 --- PID Control Basics …….………………………………………….……….. 33

� Ex. 11 --- PID Control Using RacerM1 (Digital Mode) ….…….….…….... 36

� Ex. 12 --- PID Control Using RacerM1 (Analog Mode) ….……………….. 37

� Ex. 13 --- Using the 2-Axis accelerometer………….………….….…………... 39

� Ex. 14 --- Route Memorization ………….…………….…………………….…….. 39

� Ex. 15 --- Retrieving Route Information ..……......…………………….…….. 41

� Ex. 16 --- Acceleration ………………………………………………………..….…….. 42

Appendix B --- Sample Course Map .………………….………………..…….………. 46

5

Product Overview

Innoracer
TM

is controlled by the BASIC Commander® and featured with two built-in

modules, namely RacerM1 and RacerP1 module. The RacerM1 module is used to

sense the track and control the motors to follow the track. The RacerP1 module is

used to memorize the route by recording the marks on the curve change, which

provides user information to drive the Innoracer
TM

as fast as possible in later runs. It

is specially designed as an entry-level platform for users to learn programming,

motor control, line tracking with the unique feature of PID control.

Product Features

� Using the BASIC Commander® as controller, users can modify their program and

download to the Innoracer
TM

via a USB cable.

� Four cmdBUS
TM

connectors, which allow users to add peripheral modules easily,

such as Sonar module to enrich the functionality.

� 7 fixed infrared sensors for track detection.

� To fit different track requirement, 2 position-adjustable infrared sensors for start,

stop and curve change marks detection.

� Infrared calibration button to optimize the infrared detection range.

� Reset button to restart the program.

� Variable resistors to change the infrared detection sensitivity, if digital sensor

method is employed.

� Four buttons with LEDs for users to define their own functions and indications.

� Built-in buzzer controllable through program or used by RacerP1 module to

generate beeps when a curve change mark is detected.

� Built-in RacerM1 module to control two DC motors with 1024 steps of speed.

� Built-in PID control feature in RacerM1 module for better track following

capability.

� Scalar parameter to increase the PID numerical resolution for PID fine tune.

� Built-in accelerometer to detect x- and y-axial acceleration forces.

� Built-in RacerP1 module to record up to 256 entries of track section information.

� Track infrared sensing in digital or analog data with commands for data reading.

� Record track information including length, x- and y-axial average and maximum

acceleration value, curve radius and direction.

� Hole array on the main board for adjusting the motor position to adapt various

curve tracking needs.

� Replacement of motors for better driving performance.

6

System Diagram

Fig 1 System Diagram

Accessories, such as battery, tires or other irrelevant electronic components are

not shown in this system chart.

7

Key Components

Fig 2 Key Component Placement

Controller – BASIC Commander®

BASIC Commander® is the main controller of the InnoracerTM line tracer. Also known

as BC2, the 32-pin version BASIC Commander® has 24 I/O lines suitable for

applications which require more I/O lines.

Users can edit and compile their program in the innoBASICTM Workshop

environment and download through a USB cable to the BASIC Commander®. If you

are not familiar with the BASIC Commander® system, please refer to the “BASIC

Commander® and innoBASICTM Workshop User's Manual” for more detailed

information.

Reflective Infrared Sensors

In the front of the InnoracerTM, there are 7 reflective infrared sensors which are used

to detect the track. The right side infrared sensor is used to detect the Start or Stop

mark, which indicates the beginning and the end of the track. The left side infrared

8

sensor is used to detect the curve change marks throughout the whole route. The

track is divided into segments for route memorization.

Near each infrared sensor, there is a red LED and blue color variant resistor. By

turning the screws on variant resistors, you change the threshold of infrared

detection. The LED will turn on if the reflection intensity is higher than the threshold,

otherwise the LED will turn off. Due to different signal path and threshold settings,

the infrared detection by the BASIC Commander® might not be exactly the same as

that detected by the RacerM1 module.

Please refer to Tutorial Programs section in the appendix for more information

about how to read either digital or analog infrared results.

Infrared Sensors Calibration

Due to the different ambient light and surface material, the infrared sensing results

may vary under different situations. To eliminate the variance, calibration is required.

For the InnoracerTM, there are two kinds of calibration, digital and analog. The

first one is to change the infrared sensors’ detection threshold by adjusting the blue

variant resistor. Turn clock-wise to increase the threshold level, which means the

sensitivity is decreased. Each infrared sensor is accompanied with an LED which will

be lit if the infrared intensity detected is higher than the threshold. Note that this

calibration process only affects the threshold of LEDs and the infrared detection

results read by the BASIC Commander® through its I/Os.

The second one is to press the CAL_BTN button for at least 5 seconds, a red LED

near the CAL_BTN will be lit to indicate the calibration in process. Put the InnoracerTM

on the track and move it back and forth slowly with all the infrared sensors passing

the black and white area of the track several times. Press the CAL_BTN button once

again to finish the calibration process and the LED will turn off. The infrared detection

range of each infrared sensor is measured and normalized internally for analog

infrared intensity sensing use. Note that the analog calibration affects the sensing

results of the RacerM1 module only.

Buzzer
The buzzer is mainly used to generate automatically a 0.2 seconds recording beep

sound each time a curve change mark is detected during the route memorization

process. The buzzer is controlled through the built-in RacerP1 module commands.

Please refer to PacerP1 module command set for other buzzer-related commands.

9

Nevertheless, you may still use the Beep() command to generate beep sounds in your

own application.

DC Motors
The InnoracerTM is equipped with two spur brushed DC motors. A Hall Effect sensor is

affixed to detect the polarity change of the rotor when rotating, through which you

can calculate the distance that each wheel has travelled. This information is used for

route memorization.

Note that the DC motor electric brush wears out when spinning against the

mechanical parts, the DC motors lifetime is limited. Running at a high speed for a

long time will further shorten the life of the DC motors.

Please refer to Tutorial Programs section in the appendix for more information

about how to control the DC motors with the given speed parameters.

Accelerometer

The InnoracerTM is equipped with a two-axial accelerometer to measure the proper

acceleration in both x- and y-axis, through which you can calculate the curve radius

and direction. This information is used for route memorization.

 The x-axial acceleration is defined in the lateral axis of the InnoracerTM and the

y-axial acceleration is in the longitudinal axis of the InnoracerTM. Please refer to the

following picture.

Fig 3 Acceleration Directions

10

Please refer to Tutorial Programs section in the appendix for more information

about how to save the current x- and y-axial acceleration values for calibration at a

standstill position and display them in the Terminal Window.

Battery Charger
This charger is designed for 5~10 cells of NiMH battery pack. Do not use this charger

to charge other types of battery. Do not use this charger as a power adaptor. An

adaptor cable is also provided.

Connect the small end of the cable to the charger and the big end to the battery

pack. There is an LED indicator on the charger. The red LED indicates it is in the fast

charging mode. When the green is lit, the battery pack is charged about 85% full and

the charger will continue to operate in the slow charging mode. The battery pack

may reach about 95% full if it is charged in slow charging mode for a longer period.

Fig 4 Battery Charger & Adaptor Cable

11

Command Set
RacerM1 Module Command Set

The following table lists all the unique commands provided with the RacerM1

Module. Note that essential words in the commands will be written in bold type and

italics in bold type. The bold type word must be written exactly as shown, whereas

the italic bold type words must be replaced with the user values. Note that the

innoBASIC™ language is case-insensitive.

To execute functions related to RacerM1 module, please declare the module ID

number as 3 in the program, i.e. Peripheral ModuleName As RacerM1 @ 3

Command Syntax Description

Motor Control Commands

ForwardA(Speed)

ForwardB(Speed)

ForwardAB(SpeedA, SpeedB)

ForwardDual(Speed)

BackwardA(Speed)

BackwardB(Speed)

BackwardAB(SpeedA, SpeedB)

BackwardDual(Speed)

Sets forward/backward speed of motor A, B or both

specified by variable Speed or both SpeedA and

SpeedB ranging from 0 ~ 1024 respectively. The

motor rotating direction is defined from the

Innoracer
TM

viewpoint. Motor A is the left-side

wheel motor while Motor B is the right-side wheel

motor.

StopA()

StopB()

StopDual()

Stops motor A or B or both.

BrakeA()

BrakeB()

BrakeDual()

Brakes motor A or B or both.

SetDirA(Dir)

SetDirB(Dir)

SetDirAB(DirA, DirB)

SetDirDual(Dir)

Sets motor(s) rotation direction of motor A, B or

both specified by variable(s) Dir or both DirA and

DirB respectively. The returned value 0 for forward

and 1 for backward.

SetDCA(Speed)

SetDCB(Speed)

SetDCAB(SpeedA, SpeedB)

SetDCDual(Speed)

Sets motor(s) rotation speed of motor A, B or both

specified by variable(s) Speed or both SpeedA and

SpeedB ranging from 0 ~ 1024 respectively. Note

that these commands change the speed only, the

12

direction remains unchanged.

SetVelA(Vel)

SetVelB(Vel)

SetVelAB(VelA, VelB)

SetVelDual(Vel)

Sets speed of motor A, B or both specified by

variable Vel or both VelA and VelB ranging from

-1024 ~ 1024 respectively. The absolute value stands

for speed and positive and negative sign stands for

rotation direction.

Motor Speed and Rotation Direction Commands

GetDCA(Speed)

GetDCB(Speed)

GetDCAB(SpeedA, SpeedB)

Gets forward speed of motor A, B or both and stores

in variable Speed or both SpeedA and SpeedB. The

returned value(s) ranges from 0 ~ 1024.

GetDirA(Dir)

GetDirB(Dir)

GetDirAB(DirA, DirB)

Gets rotation direction of motor A, B or both and

stores in variable Dir or both DirA and DirB. The

returned value is 0 for forward and 1 for backward.

GetVelA(Vel)

GetVelB(Vel)

GetVelAB(VelA, VelB)

Gets speed of motor A, B or both and stores in

variable Vel or both VelA and VelB ranging from

-1024 ~ 1024 respectively. The absolute value stands

for speed and the positive and negative sign stands

for rotation direction.

Infrared Sensing Commands

GetIR(IR)

Gets the digital (1 or 0) values of all seven infrared

sensors, combining in one data byte with value

ranging from 0 ~127 and stores in variable IR. The

bit 0 is the right-most IR sensor and the bit 6 is the

left-most IR sensor. The bit 7 is not used always read

as 0.

GetAnalogIR(ID, IR)

Gets the infrared intensity value ranging from 0

~4095 and stores in variable IR. The infrared sensor

unit is specified by variable ID ranging from 0 ~ 6.

NormStart(Mode)

Sets the normalization calibration mode by the

variable Mode ranging from 0 ~4.

0: Calibrating until calibration button pressed.

1: Calibrating for 10 seconds.

2: Calibrating for 20 seconds.

3: Calibrating for 30 seconds.

4: Calibrating for 60 seconds.

GetNorm (ID, Min, Max)

Gets the minimum and maximum infrared intensity

of specified IR sensor during calibration and stores

them in variable Min and Max, which will be used

13

by the RacerM1 module for internal normalization.

The IR sensor is specified by variable ID ranging

from 0 ~ 6. The infrared intensity value ranges from

0 ~ 4095.

SetIRThreshold(Rate)

Sets the threshold percentage value specified by

variable Rate ranging from 0 ~ 100 of infrared

intensity range. You can use this setting to change

the infrared sensibility. Take a Rate value 60 for

example, if the infrared intensity is stronger than

the 60%, say 85%, of the possible infrared range, it

will be regarded as logic 1 meaning a white track is

detected, otherwise logic 0 meaning white track is

not detected.

GetIRThreshold(Rate)

Retrieves the threshold percentage value and saves

in variable Rate. The value ranges from 0 ~ 100.

Please refer to above command for more details.

SetIRMode(Mode)

Sets the IR sensors track detection method by

variable Mode with value 0 for digital mode or 1 for

analog mode. The default value is 0 for digital mode.

GetIRMode(Mode)

Gets the IR sensors track detection method setting

and stores in variable Mode, of which the value 0 is

for digital mode or 1 for analog mode.

PID Commands

SetP(Val)

SetI(Val)

SetD(Val)

Sets the P, I or D parameter by variable Val. The

value ranges from 0 ~ 255.

GetP(Val)

GetI(Val)

GetD(Val)

Retrieves the P, I or D parameter and stores in

variable Val. The value ranges from 0 ~ 255.

SetScalar(Val)

Sets the PID parameters scalar by variable Val

ranging from0 ~ 32 as a multiple of the original PID

values. However, if the given scalar is greater than

32, the PID control function will not be activated.

GetScalar(Val)

Retrieves the PID Scalar setting and stores in

variable Val ranging from 0 ~ 255. Please refer to

the above command for more details about scalar.

SetErrScale(Err1, Err2, Err3, Err4, Err5,

Err6)

Sets the error values by variables Err1 through Err6

as feedback for PID control for various IR detection

14

situations. Each of error value Err1 ~ Err6 ranges

from 0 ~ 127.

GetErrScale (Err1, Err2, Err3, Err4, Err5,

Err6)

Retrieves the error values settings and stores them

in variables Err1 through Err6 as feedback for PID

control under various IR detection situations. Each

of Err1 ~ Err6 ranges from 0 ~ 127.

Speed Setting and Control Commands

SetSpdCtrlA(SpdMin, SpdMax)

SetSpdCtrlB(SpdMin, SpdMax)

Sets the minimum and maximum speed of motor A

or B by variables SpdMin and SpdMax for PID speed

control. SpdMin and SpdMax range from -1024 ~

1024. SpdMax must be greater than SpdMin. If the

given value of SpdMax is not greater than SpdMin,

the command will be ignored.

GetSpdCtrlA(SpdMin, SpdMax)

GetSpdCtrlB(SpdMin, SpdMax)

Retrieves the minimum and maximum speed

settings of motor A or B for PID speed control and

stores in variables SpdMin and SpdMax. SpdMin

and SpdMax range from -1024 ~ 1024.

SetStraight(SpeedA, SpeedB)

Sets the straight line speed of motor A and B by

variables SpeedA and SpeedB ranging from -1024 ~

1024 for PID speed control.

GetStraight(SpeedA, SpeedB)

Retrieves the straight line speed setting of motor A

and B and stores in variables SpeedA and SpeedB

ranging from -1024 ~ 1024 for PID speed control.

SpdCtrlOn(Mode)

Starts the PID speed control in mode specified by

variable Mode.

0: Any change of speed settings will terminate the

PID speed control automatically.

1: PID control continues regardless of the speed

settings change.

SpdCtrlOff()
Stops the PID speed control. The Innoracer

TM
will

run with the last given speed settings.

GetMax(SpeedA, SpeedB)

Gets the maximum speed of motor A and B during

speed control and stores them in SpeedA and

SpeedB, which ranges from -1024 ~ 1024.

GetMin(SpeedA, SpeedB)

Gets the minimum speed of motor A and B during

speed control and stores them in SpeedA and

SpeedB, which ranges from -1024 ~ 1024.

ClearRec() Clears all the recorded track section information.

15

SetCtrlFreq(Period)

Sets the speed control frequency by variable Period,

ranging from 0 ~ 100 of unit ms. If the given value

exceeds the maximum speed control capability, the

maximum speed will be used. Period with value 0 is

equal to value 1.

GetCtrlFreq(Period)

Retrieves the speed control frequency setting and

stores in variable Period, ranging from 0 ~ 100 of

unit ms.

Miscellaneous Commands

SetCrossMode(Mode)

Sets cross road running behavior by variable Mode,

ranging from 0 ~ 2.

0: keeps running.

1: stops.

2: brakes.

GetCrossMode(Mode)
Retrieves cross road behavior setting and stores in

variable Mode, ranging from 0 ~ 2.

SetOutsideMode(Mode)

Sets the tracer run-away behavior by variable Mode,

ranging from 0 ~ 2.

0: keeps running.

1: stops.

2: brakes.

GetOutsideMode(Mode)
Retrieves the run-away behavior setting and stores

in variable Mode, ranging from 0 ~ 2.

SetLineColor(Color)

Sets the track color by variable Color. Value 0 for

white and 1 for black color. The default value is 0 for

white track color.

GetLineColor(Color)

Retrieves the track color setting and stores in

variable Color. Value 0 for white and 1 for black

color.

RacerP1 Module Command Set

The following table lists all the unique commands provided with the RacerP1 Module.

Note that essential words in the commands will be written in bold type and italics in

bold type. The bold type word must be written exactly as shown, whereas the italic

bold type words must be replaced with the user values. Note that the innoBASIC™

language is case-insensitive.

16

To execute functions related to RacerP1 module, please declare the module ID

number as 4 in the program, i.e. Peripheral ModuleName As RacerP1 @ 4

Command Syntax Description

Motor Tachometer Commands

bStatus = TACHInR(TACH)

bStatus = TACHInL(TACH)

Gets the right or left motor Hall Effect pulse count

detected in each complete 125ms period and stores

it in variable TACH, ranging from 0 ~ 65535 and

returns the pulse counting reading status in variable

bStatus. If the count has not been read, value 1 is

returned, otherwise value 0 is returned.

Note that the count value is stored in an internal

buffer to be read by the commands If you can not

read the count value stored in the buffer within the

125ms interval, the internal data buffer will be

overwritten by the new data.

bStatus = TACHInDual(TACHR, TACHL)

Gets both the right and left motor Hall Effect pulse

counts detected in each complete 125ms period and

stores them in variable TACHR and TACHL, and

returns the pulse counting status in variable

bStatus, ranging from 0 ~ 3.

0: both of the counts have been read

1: left motor has not been read

2: right motor has not been read

3: both of the counts have not been read

Note that the count values are stored in internal

buffers to be read by the commands separately. If

you cannot read the count value stored in the buffer

within the 125ms interval, both the internal data

buffers will be overwritten by the new data.

Route Recording Commands

StartRec(Mode)

Starts to record the track information. If Mode has

value 1, then the information will be stored in

EEPROM, which can be retrieved later for route

memorization, otherwise, if it has value 0, only

current recorded section information is available,

which will be overwritten by the next track section

information. The recording beep sound at each

17

curve change is generated in both modes.

StopRec()
Stops recording the track information. The recording

beep sound will not be generated.

GetRecStatus(Status)

Gets the track recording status and stores in variable

Status.

0: not recording or recording finished.

1: recording, but has not passed the start mark.

2: recording and passed the start mark.

ClrTotalLen()
Clears the total length of the track in tachometer

counts unit.

GetRateRL(Rate)

Gets the right wheel and left wheel tachometer

pulse count ratio multiplied by 65536 and saves in

variable Rate ranging from 0 ~ 4294967295.

GetSecCnt(Cnt)
Gets the curve change mark counts and stores in

variable Cnt, ranging from 0 ~ 255.

GetSecLen(Num, LengthR, LengthL)

Gets the traveled length of right and left wheel in

section Num, ranging from 0 ~ 255 and stores the

lengths in variable LengthR and LengthL ranging

from 0 ~ 4294967295. The length is expressed with

tachometer counts as the unit.

GetCurSecTACH(LengthR, LengthL)

Gets the traveled length of right and left wheel of

current section and stores the lengths in variable

LengthR and LengthL ranging from 0 ~ 4294967295.

The length is expressed with tachometer counts as

the unit. Note that this command takes effect if

track recording mode is activated.

GetTotalLen(LengthR, LengthL)

Gets the till current total traveled length of right and

left wheel and stores the lengths in variable

LengthR and LengthL ranging from 0 ~ 4294967295.

The length is expressed with tachometer counts as

the unit. Note that this command takes effect if

track recording mode is activated.

Counter Commands

SetTimer(Freq)

Sets the timer time-out frequency by variable Freq,

ranging from 0 ~ 1000 in 10 Hz unit. To start the

timer, a low to high transient needs to be issued by

P12 of BASIC Commander®. When the timer times

out, a high level signal can be issued and can be

18

read from P13 of BASIC Commander®. To clear the

P13 high level signal, a low to high transient needs

to be issued again by P12 of BASIC Commander®.

GetTimer(Freq)

Retrieves the timer time-out frequency setting and

stores in variable Freq, ranging from 0 ~ 1000 in 10

Hz unit.

Infrared Sensing Command

GetIR(IR)

Gets the start/stop and curve change marks detect

result and stores in variable IR ranging from 0 ~ 3,

where bit 0 stands for the start/stop mark and bit 1

for the curve change mark. Take the white marks

for example, if start/stop mark or curve change

mark is detected, their corresponding bit will be 1.

Accelerometer Commands

GetG(Gx, Gy)

Gets x- and y-axial acceleration values ranging from

-2048 ~ 2047 and stores them in variables Gx and

Gy.

GetMaxG(Gx, Gy)

Gets the maximum x- and y-axial acceleration values

ranging from -2048 ~ 2047 and stores them in

variables Gx and Gy. Note that this command takes

effect if track recording mode is activated.

GetAvgG(Gx, Gy)

Gets the average x- and y-axial acceleration values

ranging from -2048 ~ 2047 and stores them in

variables Gx and Gy. Note that this command takes

effect if track recording mode is activated.

GetSecMaxG(Num, Gx, Gy)

Gets the maximum x- and y-axial acceleration values

ranging from -2048 ~ 2047 of route section specified

by variable Num ranging from 0 ~ 255 and stores

them in variables Gx and Gy. Note that this

command takes effect if track recording mode is

activated.

GetSecAvgG(Num, Gx, Gy)

Gets the average x- and y-axial acceleration values

ranging from -2048 ~ 2047 of route section specified

by variable Num ranging from 0 ~ 255 and stores

them in variables Gx and Gy. Note that this

command takes effect if track recording mode is

activated.

SaveCur0G() Saves current x- and y-axial acceleration values

19

detected as the offsets of a standstill position.

Load0G(Gx, Gy)

Gets the x- and y-axial acceleration offset values

stored for standstill position and stores them in

variables Gx and Gy ranging from -2048 ~ 2047.

Set0G(Gx, Gy)

Sets the x- and y-axial acceleration offset values

for standstill position by variables Gx and Gy ranging

from -2048 ~ 2047.

Curve Commands

GetRadius(Dir, Radius)

Gets the curve direction and radius of the most

recently recorded track section and stores them in

variables Dir and Radius. The return value of Dir will

be 0 or 1 which stands for CCW and CW turning

respectively. The value of Radius ranges from 0 ~

4294967295 in tachometer counts unit. Note that

this command takes effect if track recording mode is

activated, otherwise it returns 0.

GetSecRadius(Num, Dir, Radius)

Gets the curve direction and radius of the track

section specified by variable Num ranging from 0 ~

255, and stores them in variables Dir and Radius.

The return value of Dir will be 0 or 1 which stands

for CCW and CW turning respectively. The value of

Radius ranges from 0 ~ 4294967295 in tachometer

counts unit. If the given section number exceeds the

maximum number of sections, unexpected values

will be returned.

Miscellaneous Commands

Beep() Generates a beep sound of 0.2 second duration.

AutoBeep(Mode)

Enables or disables Auto Beep function by variable

Mode. When a curve change mark is detected, a 0.2

ms beep sound is generated. Mode with value 0 will

disable auto beep function, while value 1 will

enable the auto beep function. Other values will be

ignored.

SetCrossTime(Time)

Sets the cross track detect interval in variable Time.

If both of the curve and start/stop IR sensors detect

the marks within Time ms interval, it will be

regarded as a cross track instead of a curve or

start/stop mark. Time ranges from 0 ~ 250 ms. It

20

needs to be initialized in the program.

GetCrossTime(Time)
Retrieves the cross track detect interval and stores

in variable Time. The value ranges from 0 ~ 250 ms.

SetLineColor(Color)

Sets the track line color in variable Color. 0: white

line; 1: black line. Other values will be ignored. The

default value is 0 at each program reset.

GetLineColor(Color)
Retrieves the track line color and saves in variable

Color. 0: white line; 1: black line.

EnWP()

DisWP()

Enables or disables EEPROM Write Protection

function. The RacerP1 module uses an on-board

EEPROM to store the recorded information,

including the left and right tachometer counts,

maximum and average acceleration in both x- and

y-direction, curvature radius and direction, etc.

However, this EEPROM is also accessible directly by

the BASIC Commander® through its I/Os. To prevent

from data being over-written accidentally,

commands are provided for EEPROM management.

21

Appendix A --- Tutorial Programs

To help you be familiar with the Innoracer
TM

, some tutorial programs with brief

introduction are provided in this section. You can also find the tutorial examples in

the DVD.

To maintain the tutorial programs free of error and up-to-date, they are subject

to change without notice. For new users, who are not familiar with the BASIC

Commander®, please refer to the “BASIC Commander® and innoBASICTM Workshop

User's Manual” for more detailed information.

Ex. 1 --- Light the LEDs Sequentially

This program gives the basics of lighting the LEDs. There are 4 LEDs on the

Innoracer
TM

 board, they can be controlled via pin 20, 21, 22 and 23 of the BASIC

Commander® I/Os.

Sub Main()

Dim bLED As Byte ' variable for LED pin number

Do ' infinite do loop

For bLED=20 To 23 ' from pin 20 through pin 23

 High bLED ' turn on LED

 Pause 500 ' pause for 0.5 second

 Low bLED ' turn off LED

 Pause 500 ' pause for 0.5 second

 Next

Loop

End Sub

Ex. 2 --- Light the LEDs If Buttons Pressed

In addition to the 4 LEDs, there are also 4 buttons on the innoracer® board, they can

be accessed via pin 16, 17, 18 and 19 of the BASIC Commander® I/Os. If any one of

the 4 buttons is pressed, the corresponding LED will be lit.

22

#DEFINE BTN_1 16

#DEFINE BTN_2 17

#DEFINE BTN_3 18

#DEFINE BTN_4 19

Sub Main()

Dim bCnt1 As Byte = 0

Dim bCnt2 As Byte = 0

Dim bCnt3 As Byte = 0

Dim bCnt4 As Byte = 0

BEGIN:

 Pause 10 ' 10 ms debounce time

' Detect buttons and jump to labels if pressed

 Button BTN_1,0,255,20,bCnt1,1,BLINK_LED1

 Button BTN_2,0,255,20,bCnt2,1,BLINK_LED2

 Button BTN_3,0,255,20,bCnt3,1,BLINK_LED3

 Button BTN_4,0,255,20,bCnt4,1,BLINK_LED4

 Goto BEGIN ' loop from beginning

BLINK_LED1:

 TurnOnLED(20)

 Goto BEGIN

BLINK_LED2:

 TurnOnLED(21)

 Goto BEGIN

BLINK_LED3:

 TurnOnLED(22)

 Goto BEGIN

BLINK_LED4:

 TurnOnLED(23)

 Goto BEGIN

End Sub

Sub TurnOnLED(bLED As Byte)

 High bLED ' turn on LED

 Pause 500 ' wait for 0.5 seconds

23

 Low bLED ' turn off LED

 Pause 500 ' wait for 0.5 seconds

End Sub

Ex. 3 --- Motor Control Using RacerM1

There are two DC motors on the innoracer® board. This program gives the basics of

DC motor control using our featured commands available through the RacerM1

module. This program shows how to control the DC motors with the given speed

parameters through the RacerM1 module. To prevent the InnoracerTM from running

away, please keep it off the ground when executing the program.

Note that the DC motor electric brush wears out when spinning against the

mechanical parts, the DC motors lifetime is limited. Running at a high speed for a

long time will further shorten the life of the DC motors.

Peripheral myM As RacerM1 @ 3 ' declare Motor Control Module ID

Sub Main()

Dim bKey As Byte ' variable for stop or brake

Dim iVelL, iVelR As Integer ' velocity of left and right motor

Do ' infinite loop

Debug CLS ' clear terminal window

 Debugin "Enter Left Motor Speed (-1024~1024): ", iVelL

 Debug iVelL, CR

 Debugin "Enter Right Motor Speed (-1024~1024): ", iVelR

 Debug iVelR, CR

 myM.SetVelAB(iVelL, iVelR) ' set parameters to RacerM1 module

 Debugin "Enter how to stop (0: Stop, 1: Brake): ", bKey

 Debug bKey, CR

If bKey=0 Then

myM.StopDual() ' stop the car

 Else

 myM.BrakeDual() ' brake the car

 End If

24

Keyin "Any key to continue testing", %CHR bKey

Loop

End Sub

Ex. 4 --- Detection with Infrared Sensors

There are total 9 infrared sensors used by the innoracer®. Seven of them are used to

detect the position of the track. The remaining two are used to detect the Start and

Stop mark on the right-hand side and the curve change marks on the left-hand side.

This program shows how to read the infrared detection results and displays them in

the Terminal Window.

 Note that the infrared sensors calibration is advised. Please check the "Infrared

Sensors Calibration" section for more details.

Sub Main()

 Dim bIR,ST,CH As Byte ' variables for IR intensity values

 Debug CLS ' clear Terminal Window

 Debug "Route IR Value: ",CR ' text out to Terminal Window

 Debug " ST IR Value: ",CR '

 Debug " CH IR Value: " '

 ' infinite loop, to detect and show IR intensity values

 Do

 bIR = Readport(0) ' read port 0 (i.e. bit 0 to bit 7)

 bIR = bIR And &H7F

 ST=in(11) ' read bit 11

 CH=in(7) ' read bit 7

 Debug CSRXY(17,1), %BIN bIR ' display bit 0~7 in binary

format

 Debug CSRXY(17,2), %BIN ST ' display bit 11

 Debug CSRXY(17,3), %BIN CH ' display bit 7

 Loop

End Sub

25

Ex. 5 --- Tracking with 3 Infrared Sensors

There are 7 infrared sensors on the Innoracer
TM

, which can be used to detect the

position of the track. This program starts with an easier way to detect the track by

using the central 3 of them. The ERR values are for tutorial purpose only. You may try

to find your own ERR value as the feedback for better tracking performance.

Peripheral myM As RacerM1 @ 3 ' declare module ID

#DEFINE CEN_SPD_R 170 ' right wheel central speed

#DEFINE CEN_SPD_L 170 ' left wheel central speed

#DEFINE ERR1 80 ' error values

#DEFINE ERR2 50 '

#DEFINE ERR3 30 '

#DEFINE ERR4 0 '

#DEFINE ERR5 -30 '

#DEFINE ERR6 -50 '

#DEFINE ERR7 -80 '

Sub Main()

 Dim IR2,IR3,IR4,Sensor As Byte ' detection results

 Dim R,L,Err As Integer ' right/left speed and error

 Pause 2000 ' wait for 2 seconds

 Do ' infinite Loop

 IR2 = In(2) ' read pin 2 (IR2) IR value

 IR3 = In(3) ' read pin 3 (IR3) IR value

 IR4 = In(4) ' read pin 4 (IR4) IR value

 Sensor = (100 * IR4) + (10 * IR3) + IR2

 Select Sensor ' error look-up table

 Case 011

 Err = ERR2

 Case 001

 Err = ERR3

 Case 101

 Err = ERR4

 Case 100

26

 Err = ERR5

 Case 110

 Err = ERR6

 Case 111

 If Err<0 Then ' line out of range

 Err = ERR7 ' set the biggest error

 Elseif Err>0 Then ' same direction As

 Err = ERR1 ' previous error

 End If'

 Case 000

 Err = ERR4

 End Select

 R = CEN_SPD_R + Err ' adjust right/left

 L = CEN_SPD_L - Err ' wheel speed

 If R>1024 Then ' right wheel speed limit

 R = 1024 '

 Elseif R<-1024 Then '

 R = -1024 '

 End If

 If L>1024 Then ' left wheel speed limit

 L = 1024 '

 Elseif L<-1024 Then '

 L = -1024 '

 End If

 myM.SetVelAB(L,R) ' change speed accordingly

 Loop

End Sub

Ex. 6 --- Tracking with 7 Infrared Sensors

In this program, we use all of the 7 infrared sensors on the Innoracer
TM

 for tracking,

For smaller curve radius, 3 LEDs might not be enough to follow the track. In this

situation, 7 infrared sensors will be useful. The ERR values are for tutorial purpose

27

only. You may try to find your own ERR value as the feedback for better tracking

performance.

Peripheral myM As RacerM1 @ 3 ' declare module ID

#DEFINE CEN_SPD_R 210 ' right wheel central speed

#DEFINE CEN_SPD_L 210 ' left wheel central speed

#DEFINE ERR1 111 ' error values

#DEFINE ERR2 71

#DEFINE ERR3 45

#DEFINE ERR4 21

#DEFINE ERR5 9

#DEFINE ERR6 3

#DEFINE ERR7 0

#DEFINE ERR8 -3

#DEFINE ERR9 -9

#DEFINE ERR10 -21

#DEFINE ERR11 -45

#DEFINE ERR12 -75

#DEFINE ERR13 -111

Sub Stop() ' subroutine to stop motors

 myM.BrakeDual()

End Sub

Sub Main()

 Dim Sensor As Byte ' detection results

 Dim R,L,Err As Integer ' right/left speed and error

 Pause 2000 ' wait for 2 seconds

 Do ' infinite Loop

 Sensor=Readport(0) ' read port 0 (P0~P7)

 Sensor=Sensor And &H7F ' mask unused P7 data

 Select Case Sensor ' error look-up table

 Case &B0111111 : Err = ERR1

 Case &B0011111 : Err = ERR2

 Case &B1011111 : Err = ERR3

28

 Case &B1001111 : Err = ERR4

 Case &B1101111 : Err = ERR5

 Case &B1100111 : Err = ERR6

 Case &B1110111 : Err = ERR7

 Case &B1110011 : Err = ERR8

 Case &B1111011 : Err = ERR9

 Case &B1111001 : Err = ERR10

 Case &B1111101 : Err = ERR11

 Case &B1111100 : Err = ERR12

 Case &B1111110 : Err = ERR13

 Case &B1111111 ' out of tracking range

 Stop() ' stop motors

 Goto FINISH ' terminate the program

 End Select

 R = CEN_SPD_R + Err ' adjust right wheel speed

 L = CEN_SPD_L - Err ' adjust left wheel speed

 If R>1024 Then ' right wheel speed limit

 R = 1024 '

 Elseif R<-1024 Then '

 R = -1024 '

 End If '

 If L>1024 Then ' left wheel speed limit

 L = 1024 '

 Elseif L<-1024 Then '

 L = -1024 '

 End If '

 myM.SetVelAB(L,R) ' change speed

 Loop

FINISH:

End Sub

29

Ex. 7 --- Analog Infrared Readings

This program shows how to get the analog readings of the seven infrared sensors.

They will be displayed in the Terminal Window. It is handy way to check your infrared

sensors if you encounter infrared sensing problem.

Peripheral myM As RacerM1 @ 3

Sub Main()

 Dim i As Byte ' Infrared sensor number

 Dim wIR As Word ' returned analog value

 Debug CLS ' clear Terminal Window

 Do ' infinite loop

 For i=0 To 6 ' from IR 0~6

 MyM.GetAnalogIR(i,wIR) ' get analog data

 Debug CSRXY(1,i),%DEC6R wIR,CR ' display

 Next

 Loop

End Sub

Ex. 8 --- Normalization Basics

In the previous exercise, you should have noticed that all the infrared sensors return

readings with different value ranges. The raw data needs to be normalized to be

manipulated easily in the program. The normalization is accomplished during the

calibration process by the RacerM1 module, which employs the min-max

normalization method to perform a linear transformation on the original data range

to new data range. This program shows how the normalization is done within the

RacerM1 module during calibration process.

Peripheral myM As RacerM1 @ 3

Sub Main()

 Dim i As Byte ' Infrared sensor number

 Dim aMin(6),aMax(6),aSec(6) As Word ' variable arrays

 Dim dwIR,dwNorm As Dword ' analog and calibrated values

 Debug CLS

30

 For i=0 To 6 ' from IR 0~6

 myM.GetNorm(i,aMin(i),aMax(i)) ' get max/min of calibration

 aSec(i) = aMax(i) - aMin(i) ' calculate the range

 Next

 Do ' infinite loop

 For i=0 To 6 ' from IR 0~6

 MyM.GetAnalogIR(i,dwIR) ' get the raw data

 dwNorm = (100*(dwIR-aMin(i)))\aSec(i) ' normalization

 Debug CSRXY(1,i+1),%DEC7R dwIR ' original values

 Debug CSRXY(8,i+1),%DEC7R dwNorm ' normalized values

 Next

 Loop

End Sub

Ex. 9 --- Track Detection Using Polynomial Interpolation

In the previous “Tracking with 7 Infrared Sensors” exercise, we use the discrete

values, for instance, 1, 2, 3 to describe the location of the track. However, for more

precise PID control, we need higher resolution feedback of the track position. To

achieve this, we employ the polynomial interpolation method in the RacerM1

module. Nevertheless, to learn more about the polynomial interpolation basics, we

implement the polynomial interpolation directly in the main program for tutorial

purposes.

 Here we give a brief explanation of how it works. When the Innoracer
TM

 is

running over the track, the infrared reflection intensity detected by the sensors

resembles a normal distribution bell shape. However, the normal distribution

function is not easy to solve, so we use the central part of a parabola to resemble the

normal distribution. The parabola is represented by the polynomial y=ax
2
+bx+c. From

the infrared readings of 7 IR sensors, we use the 3 highest infrared readings to solve

the polynomial and to get the coefficients a, b and c. The vertex of a parabola

indicates the center of the track, which can be calculated by the formula x=-b/2a with

the highest IR sensor as the origin of the coordinates.

 Note that to solve the polynomial we need 3 highest readings, which are more

significant to resemble the actual intensity distribution precisely. However, if the

highest reading comes from the rightmost or leftmost IR sensor, the third highest

reading infrared sensor next to it does not exist. In that case we must take the next

31

highest (the fourth) infrared sensor reading to solve the polynomial. Unfortunately,

the accuracy of resembling with a parabola decreases rapidly if the track is getting

closer to the 1
st

 and 7
th

 infrared sensors.

Peripheral myM As RacerM1 @ 3 ' declare module ID

Sub Main()

 Dim i As Byte ' loop index

 Dim bNum(2) As Byte ' max IR IDs

 Dim wARY(13) As Word

 Dim dwNorm(6) As Dword ' calibrated values

 Dim dwVal(2) As Dword ' max IR value buffer

 Dim wMax As Word ' calibrated max value

 Dim wMin As Word ' calibrated min value

 Dim wRng As Word ' calibrated range value

 Dim dwIR As Dword ' IR value

 Dim fY1,fY2,fY3 As Float

 Dim fA,fB As Float ' polynominal coeff.

 Dim fX As Float ' track location

 Debug CLS

 Debug "Track Position: "

start:

 For i=0 To 6 ' 7 IR sensors

 myM.GetNorm(i,wMin,wMax) ' get calibrated min/max values

 wARY(i)=wMax-wMin ' save min-max range

 wARY(i+7)=wMin ' save min value

 Next

 Do

 dwVal(0)=0 ' clear 3 max IR buffer

 dwVal(1)=0 '

 dwVal(2)=0 '

 For i=0 To 6

 MyM.GetAnalogIR(i,dwIR) ' get current IR value

 wRng=wARY(i) ' retrieve range

32

 wMin=wARY(i+7) ' retrieve min value

 dwNorm(i)=(100*(dwIR-wMin))\wRng ' normalization

 If dwNorm(i)>dwVal(0) Then ' sort to get the

 dwVal(2)=dwVal(1) ' 3 highest normalized

 dwVal(1)=dwVal(0) ' IR values and IDs

 dwVal(0)=dwNorm(i) '

 bNum(2)=bNum(1) '

 bNum(1)=bNum(0) '

 bNum(0)=i '

 Elseif dwNorm(i)>dwVal(1) Then '

 dwVal(2)=dwVal(1) '

 dwVal(1)=dwNorm(i) '

 bNum(2)=bNum(1) '

 bNum(1)=i '

 Elseif dwNorm(i)>dwVal(2) Then '

 dwVal(2)=dwNorm(i) '

 bNum(2)=i '

 End If '

 Next

 '

 If bNum(0)=bNum(1)+1 Then ' track at right side

 If bNum(0)<6 Then ' highest IR ID 0~5

 fX=bNum(0)

 fY1=Dword2float(dwVal(1))

 fY2=Dword2float(dwVal(0))

 fY3=Dword2float(dwNorm(bNum(0)+1)) ' take left side IR

 Else

 fX=5

 fY1=Dword2float(dwNorm(4)) ' no more leftmost IR

 fY2=Dword2float(dwVal(1)) ' take 4th IR instead

 fY3=Dword2float(dwVal(0)) ' to solve polynomial

 End If

 Elseif bNum(0)=bNum(1)-1 Then ' track at left side

 If bNum(0)>0 Then ' highest ID 1~6

 fX=bNum(0)

 fY1=Dword2float(dwNorm(bNum(0)-1)) ' take right side IR

33

 fY2=Dword2float(dwVal(0))

 fY3=Dword2float(dwVal(1))

 Else

 fX=1

 fY1=Dword2float(dwVal(0)) ' no more rightmost IR

 fY2=Dword2float(dwVal(1)) ' take 2nd IR instead

 fY3=Dword2float(2) ' to solve polynomial

 End If

 End If

 fA=0.5*(fY1+fY3-(2*fY2)) ' solve coeff. a

 fB=0.5*(fY3-fY1) ' solve coeff. b

 fX=fX-fB/(2*fA) ' estimated location

 If fX>0 And fX<6 Then

 Debug CSRXY(16,1), %REAL1.6 fX

 Else

 Debug CSRXY(16,1), "OUTSIDE"

 End If

 Loop

End Sub

Ex. 10 --- PID Control Basics

This program shows how to employ the PID control on the Innoracer
TM

. The PID

parameters given in this program are just for tutorial purpose only. You may find your

own PID parameters for different track conditions by trial and error.

Peripheral myM As RacerM1 @ 3 ' declare module ID

#DEFINE KP 6 ' PID parameters (0~255)

#DEFINE KI 0 '

#DEFINE KD 40 '

#DEFINE SCALE 0

#DEFINE CEN_SPD_R 210 ' right wheel central speed

#DEFINE CEN_SPD_L 210 ' left wheel central speed

#DEFINE ERR1 111 ' error values

#DEFINE ERR2 71

34

#DEFINE ERR3 45

#DEFINE ERR4 21

#DEFINE ERR5 9

#DEFINE ERR6 3

#DEFINE ERR7 0

#DEFINE ERR8 -3

#DEFINE ERR9 -9

#DEFINE ERR10 -21

#DEFINE ERR11 -45

#DEFINE ERR12 -75

#DEFINE ERR13 -111

Sub Stop() ' subroutine to stop motors

 myM.BrakeDual()

End Sub

Sub Main()

 Dim Sensor As Byte ' detection results

 Dim R, L As Integer ' right/left wheel speed

 Dim Integral As Integer ' Integral of errors

 Dim Derivative As Integer ' derivative of errors

 Dim Err, PreErr As Integer ' error and previous error

 Dim Out As Integer ' result of PID calculation

 Dim Control As Integer ' PID control values

 Out = 0 ' initial values

 Integral = 0 '

 PreErr = 0 '

 Pause 1000 ' wait for one second

 Do ' infinite Loop

 Sensor = Readport(0) And &B01111111 ' read port 0

 Select Case Sensor ' error look-up table

 Case &B0111111 : Err = ERR1

 Case &B0011111 : Err = ERR2

 Case &B1011111 : Err = ERR3

 Case &B1001111 : Err = ERR4

35

 Case &B1101111 : Err = ERR5

 Case &B1100111 : Err = ERR6

 Case &B1110111 : Err = ERR7

 Case &B1110011 : Err = ERR8

 Case &B1111011 : Err = ERR9

 Case &B1111001 : Err = ERR10

 Case &B1111101 : Err = ERR11

 Case &B1111100 : Err = ERR12

 Case &B1111110 : Err = ERR13

 Case &B1111111 ' out of range

 Stop() ' stop motors

 Goto FINISH ' terminate the program

 End Select

 Integral = Integral + Err 'PID formula

 Derivative = Err - PreErr

 Out = (KP*Err) + (KI*Integral) + (KD*Derivative)

 PreErr = Err

 Control = Out >> SCALE

 R = CEN_SPD_R + Control ' adjust right wheel speed

 L = CEN_SPD_L - Control ' adjust left wheel speed

 If R>1024 Then ' right wheel speed limit

 R = 1024 '

 Elseif R<-1024 Then '

 R = -1024 '

 End If

 If L>1024 Then ' left wheel speed limit

 L = 1024 '

 Elseif L<-1024 Then '

 L = -1024 '

 End If

 myM.SetVelAB(L,R) ' change speed

 Loop

FINISH:

36

End Sub

Ex. 11 --- PID Control Using RacerM1 (Digital Mode)

We practice the PID control in the precious program and now we start to use the

unique built-in PID control feature of the RacerM1 module. The major advantage that

we can get in using the RacerM1 module is to save our valuable BASIC Commander®

time to handle other important tasks.

There are two modes available, one is the digital mode, which interprets all the

infrared reflection intensity values as logic 0 or 1 and the other is the analog mode,

which interprets all the infrared reflection intensity values as analog values with

wider range. Let’s start with the digital mode first.

Peripheral myM1 As RacerM1 @ 3 ' declare module ID

#DEFINE KP 6 ' set PID parameters (0~255)

#DEFINE KI 0 '

#DEFINE KD 40 '

#DEFINE PID_SCALE 0

#DEFINE IR_POWER 70 ' define IR threshold

#DEFINE MAX_SPD_L 1024 ' max/min/central speed settings

#DEFINE MAX_SPD_R 1024 ' for left and right motors

#DEFINE CEN_SPD_L 210 ' ranging -1024~1024

#DEFINE CEN_SPD_R 210 '

#DEFINE MIN_SPD_L -1024 '

#DEFINE MIN_SPD_R -1024 '

#DEFINE ERR1 10 ' error values ranging 0~127

#DEFINE ERR2 20 '

#DEFINE ERR3 32 '

#DEFINE ERR4 45 '

#DEFINE ERR5 70 '

#DEFINE ERR6 90 '

Sub InitM1() ' initialize M1 parameters

 myM1.SetP(KP)

 myM1.SetI(KI)

37

 myM1.SetD(KD)

 myM1.SetScalar(PID_SCALE)

 myM1.SetIRThreshold(IR_POWER)

 myM1.SetSpdCtrlA(MIN_SPD_L,MAX_SPD_L)

 myM1.SetSpdCtrlB(MIN_SPD_R,MAX_SPD_R)

 myM1.SetStraight(CEN_SPD_L,CEN_SPD_R)

 myM1.SetErrScale(ERR1,ERR2,ERR3,ERR4,ERR5,ERR6)

End Sub

Sub Main()

 Dim bIr AS BYTE

 Debug CLS ' clear Terminal Window

 InitM1() ' initialize M1 parameters

 Do

 bIr=Readport(0) ' track in the middle?

 Loop Until (bIr And &B1000)

 Pause 3000 ' wait for 3 seconds

 myM1.SpdCtrlOn(0) ' start PID control

 Do ' infinite Loop

 Loop

End Sub

Ex. 12 --- PID Control Using RacerM1 (Analog Mode)

As mentioned in the previous practice, there are two modes available, one is the

digital mode, which interprets all the infrared reflection intensity values as logic 0 or

1 and the other is the analog mode, which interprets all the infrared reflection

intensity values as analog values with wider range. Now we try the analog mode,

which has a better resolution in locating the track. Let’s check it out!

Peripheral myM1 As RacerM1 @ 3 ' declare module ID

#DEFINE KP 6 ' set PID parameters (0~255)

#DEFINE KI 0 '

#DEFINE KD 40 '

38

#DEFINE PID_SCALE 0 '

#DEFINE IR_MODE 1 ' analog IR sensing mode

#DEFINE IR_POWER 70 ' IR intensity

#DEFINE MAX_SPD_L 1024 ' max/min/central speed settings

#DEFINE MAX_SPD_R 1024 ' for left and right motors

#DEFINE CEN_SPD_L 210 ' ranging -1024~1024

#DEFINE CEN_SPD_R 210 '

#DEFINE MIN_SPD_L -1024 '

#DEFINE MIN_SPD_R -1024 '

#DEFINE ERR1 3 ' error values ranging 0~127

#DEFINE ERR2 9 '

#DEFINE ERR3 21 '

#DEFINE ERR4 45 '

#DEFINE ERR5 71 '

#DEFINE ERR6 111 '

Sub InitM1() ' initialize M1 parameters

 myM1.SetP(KP) ' set PID parameters

 myM1.SetI(KI) '

 myM1.SetD(KD) '

 myM1.SetScalar(PID_SCALE)

 myM1.SetIRMode(IR_MODE) ' set IR sensing mode

 myM1.SetIRThreshold(IR_POWER) ' set IR threshold

 myM1.SetSpdCtrlA(MIN_SPD_L,MAX_SPD_L)

 myM1.SetSpdCtrlB(MIN_SPD_R,MAX_SPD_R)

 myM1.SetStraight(CEN_SPD_L,CEN_SPD_R)

 myM1.SetErrScale(ERR1,ERR2,ERR3,ERR4,ERR5,ERR6)

End Sub

Sub Main()

 Dim bIr AS BYTE

 Debug CLS ' clear Terminal Window

 InitM1() ' initialize M1 parameters

 Do

39

 bIr=Readport(0) ' track in the middle?

 Loop Until (bIr And &B1000)

 Pause 3000

 myM1.SpdCtrlOn(0) ' start PID control

 Do ' infinite loop

 Loop

End Sub

Ex. 13 --- Using the 2-Axis Accelerometer

There is a two-axis accelerometer on the Innoracer
TM

, which is used by the RacerP1

module to measure the x- and y-axis acceleration force to calculate the curve radius

and direction for route memorization. This program shows the basics using the

RacerP1 module.

Peripheral myP1 As RacerP1 @ 4 ' declare module ID

Sub Main()

 Dim iX, iY As Integer

 Debug CLS

 Debug CSRXY(1,1),"Acceleration values"

 Do

 myP1.GetG(iX,iY) ' get X and Y axis acceleration values

 Debug CSRXY(1,2),"X: ",CSRXY(4,2),%DEC5R iX ' display values

 Debug CSRXY(1,3),"Y: ",CSRXY(4,3),%DEC5R iY '

 Loop

End Sub

Ex. 14 --- Route Memorization

Route memorization is an important feature for Innoracer
TM

, so it can run as fast as

possible on straight line. This program shows how to record the track information

through the RacerP1 module. You may notice that we use two modules, namely

RacerM1 and RacerP1 modules, through which both the PID control and route

memorization, are executed at the same time under the control of BASIC

40

Commander®.

Peripheral myM1 As RacerM1 @ 3 ' declare module ID

Peripheral myP1 As RacerP1 @ 4 '

#DEFINE CROSS_TIME 20 ' time to detect intersection

#DEFINE KP 4 ' set PID parameters (0~255)

#DEFINE KI 0 '

#DEFINE KD 40 '

#DEFINE PID_SCALE 0 '

#DEFINE MAX_SPD_L 1024 ' max/min/central speed settings

#DEFINE MAX_SPD_R 1024 ' for left and right motors

#DEFINE CEN_SPD_L 210 ' ranging -1024~1024

#DEFINE CEN_SPD_R 210 '

#DEFINE MIN_SPD_L -1024 '

#DEFINE MIN_SPD_R -1024 '

#DEFINE ERR1 10 ' error values ranging 0~127

#DEFINE ERR2 20 '

#DEFINE ERR3 32 '

#DEFINE ERR4 45 '

#DEFINE ERR5 70 '

#DEFINE ERR6 90 '

Sub InitM1() ' initialize M1 parameters

 myM1.SetP(KP) ' set PID parameters

 myM1.SetI(KI)

 myM1.SetD(KD)

 myM1.SetScalar(PID_SCALE)

 myM1.SetSpdCtrlA(MIN_SPD_L,MAX_SPD_L)

 myM1.SetSpdCtrlB(MIN_SPD_R,MAX_SPD_R)

 myM1.SetStraight(CEN_SPD_L,CEN_SPD_R)

 myM1.SetErrScale(ERR1,ERR2,ERR3,ERR4,ERR5,ERR6)

End Sub

Sub InitP1() ' initialize P1 parameters

41

 myP1.SetCrossTime(CROSS_TIME) ' set detection time

 myP1.AutoBeep(1) ' recording beeps on

End Sub

Sub Main()

 Dim Status As Byte

 Dim bIR As Byte

 InitM1() ' initialize M1 parameters

 InitP1() ' initialize P1 parameters

 Do

 myM1.GetIR(bIr) ' track in the middle?

 Loop Until (bIR And &B1000)

 myP1.StartRec(1) ' start recording

 Do

 myP1.GetRecStatus(Status) ' recording started?

 Loop Until Status=1

 myM1.SpdCtrlOn(0) ' start PID control

 Do

 myP1.GetRecStatus(Status) ' start mark detected?

 Loop Until Status=2

 Do

 myP1.GetRecStatus(Status) ' stop mark detected?

 Loop Until Status=0

 myP1.StopRec() ' stop recording

 myM1.BrakeDual() ' brake both wheels

End Sub

Ex. 15 --- Retrieving Route Information

In previous exercise, we recorded all the sections of route information. In this

42

program, we display all the sections of route information in the Terminal Window. If

you encounter a route memorization problem, this is a very useful debug tool to

identify where the problem is.

Peripheral myP1 As RacerP1 @ 4 ' declare module ID

Sub Main()

 Dim i As Byte ' route index

 Dim bDir As Byte ' direction of curve

 Dim bSecCnt As Byte ' number of sections recorded

 Dim iGx, iGy As Integer ' x and y acceleration values

 Dim dwLenR, dwLenL As Dword ' distance of sections

 Dim dwRad As Dword ' radius of curves

 myP1.GetSecCnt(bSecCnt) ' read the number of sections

 For i=0 To bSecCnt ' display section information

 Debug "Sec.: ", %DEC3R i, CR

 myP1.GetSecLen(i, dwLenR, dwLenL)

 Debug "Right Wheel Dist.: ", %DEC9R dwLenR, CR

 Debug "Left Wheel Dist.: ", %DEC9R dwLenL, CR

 myP1.GetSecAvgG(i, iGx, iGy)

 Debug "X-axis acc. (average): ", %DEC5R iGx, CR

 Debug "Y-axis acc. (average): ", %DEC5R iGy, CR

 myP1.GetSecMaxG(i, iGx, iGy)

 Debug " X-axis acc. (max.): ", %DEC5R iGx, CR

 Debug " Y-axis acc. (max.): ", %DEC5R iGy, CR

 myP1.GetSecRadius(i, bDir, dwRad)

 Debug "Direction of curve: ", bDir

 Debug "Radius: ", %DEC9R dwRad,CR,CR

 Next

End Sub

Ex. 16 --- Acceleration

We know how to record the information of all the sections of the route. Now we can

start to use this information to speed up our Innoracer
TM

. There are many different

approaches or strategies to speed up the Innoracer
TM

. In this program, we learn the

basics of acceleration according to the route information. The Innoracer
TM

 starts to

43

accelerate after the Start mark is detected and stops after a given distance is

reached.

Peripheral myM1 As RacerM1 @ 3 ' declare module ID

Peripheral myP1 As RacerP1 @ 4 '

#DEFINE CROSS_TIME 20 ' time to detect intersection

#DEFINE KP 4 ' set PID parameters (0~255)

#DEFINE KI 0 '

#DEFINE KD 48 '

#DEFINE PID_SCALE 0 '

#DEFINE MAX_SPD_L 1024 ' max/min/central/acc speed settings

#DEFINE MAX_SPD_R 1024 ' for left and right motors

#DEFINE CEN_SPD_L 210 ' ranging -1024~1024

#DEFINE CEN_SPD_R 210 '

#DEFINE MIN_SPD_L -1024 '

#DEFINE MIN_SPD_R -1024 '

#DEFINE ACC_SPD_L 450 '

#DEFINE ACC_SPD_R 450 '

#DEFINE STOP_TACH 100 ' distance before start to brake

#DEFINE ERR1 10 ' error values ranging 0~127

#DEFINE ERR2 20 '

#DEFINE ERR3 32 '

#DEFINE ERR4 45 '

#DEFINE ERR5 70 '

#DEFINE ERR6 90 '

Sub InitM1() ' M1 module initialization

 myM1.SetOutsideMode(2) ' set out-of-track behavior

 myM1.SetP(KP) ' set PID parameters

 myM1.SetI(KI)

 myM1.SetD(KD)

 myM1.SetScalar(PID_SCALE)

 myM1.SetSpdCtrlA(MIN_SPD_L,MAX_SPD_L)

 myM1.SetSpdCtrlB(MIN_SPD_R,MAX_SPD_R)

 myM1.SetStraight(CEN_SPD_L,CEN_SPD_R)

44

 myM1.SetErrScale(ERR1,ERR2,ERR3,ERR4,ERR5,ERR6)

End Sub

Sub InitP1() ' P1 module initialization

 myP1.SetCrossTime(CROSS_TIME) ' set detection time

End Sub

Sub Main()

 Dim Status As Byte

 Dim IR As Byte

 Dim bCnt1 As Word

 Dim LenR,LenL As Word

 bCnt1 =0

 InitM1() 'initialize M1

 InitP1() 'initialize P1

WAIT_BUTTON:

 Do

 Button(16,0,255,255,bCnt1,1,RACE) ' button pressed?

 Loop

RACE:

 Do

 myM1.GetIR(IR) ' track in the middle?

 Loop Until (IR And &B1000)

 Pause 2000

 myP1.StartRec(0) ' start recording

 Do

 myP1.GetRecStatus(Status) ' recording started?

 Loop Until Status=1

 myM1.SpdCtrlOn(0) ' start PID control

 Do

 myP1.GetRecStatus(Status) ' start mark detected?

 Loop Until Status=2

 myM1.SetStraight(ACC_SPD_L,ACC_SPD_R) ' high speed

45

 Do

 myP1.GetTotalLen(LenR,LenL)

 Loop Until LenL>STOP_TACH

 myM1.BrakeDual() ' brake

 myP1.StopRec() ' stop recording

 Goto WAIT_BUTTON

End Sub

46

Appendix B --- Sample Course Map

This is a sample track. The actual size is 150 cm x 230 cm. There could be different

racing games with similar rules. Please refer to their official document and modify

the course and program accordingly.

