
Motor Runner C
User’s Guide
Single DC Motor Controller Module
Version: V1.0

Product Overview: Innovati’s Motor Runner C
Module can freely control a single DC motor through
simple commands. It can dynamically change the
rotation speed of the motor at any time, and get the
current status of the motor, including the rotation speed or the direction. Compared
with Motor Runner A and Motor Runner B, it can withstand a higher voltage and a
higher current.

Application:
 Control the driving of the motor for moving a model car forwards or backwards.
 Dynamically control the rotation speed of a motor in the equipment that needs the

feedback of rotation speed.
 It can be connected with a small fan for controlling the blowing strength.

Product Features:
 Control the rotation direction and speed of a single motor with simple commands
 It can withstand a maximum continuous current up to ±30A.
 It can withstand a maximum voltage up to 35V.
 Internal PWM current control at a fixed frequency of 10KHz.
 Provide the automatic shut down protection against overheat (150°C).
 Provide the protection against current overload.
 Provide the crossover-current protection and the under-voltage lockout (UVLO)

protection.
 With the brake command, it can rapidly stop the motion of the motor.
 Provide 256-step rotation speed variation.
 By using the commands, it is easy to obtain the current status of the rotation

speed or direction of the motor.
 Provide the connector for external stop signal. With a simple connection to an

external button, the user can stop the motion of the motor by simply pressing the
button.

 Provide connection pins for the motor rotation speed signal which allows the user
to connect the module to a motor with a tachometer to obtain a more accurate
rotation speed of the motor in real time through the commands.

 The tachometer can be configured for 13 different sensing frequencies.
 With the connection of a tachometer, the user can directly set the rotation speed

through the commands for rotation speed settings so that the module can control
the motor to accelerate (decelerate) to the required rotation speed and maintain
at a constant rotation speed.

 With the connection of a tachometer, the user can directly set the rotation counts
through the counter commands so that the module can control the motor to stop
once the required number of rotation counts is reached.

 Provide the counter events. When the required number of counts is reached, the
SBC will be notified by the event and perform the follow-up operations after the
counter is reached.

 It provides the error alarm event. After the error status is clear, the module can
rapidly recover the previous state through the related commands.

Connection: Set the ID switch to the required number directly, and then connect
the cmdBUS to the corresponding pins on the BASIC Commander so that the
user can perform the required operations through the BASIC
Commander.Connect the motor input pins OUTA and OUTB to the corresponding
pins on the motor to be controlled and then connect the motor power pins VM and
GND to the power supply which can provide the power required for the motor.
During the operation by the commands, if the rotation direction of the motor is
opposite to the direction specified by the command, it means that the pins OUTA
and OUTB are connected reversely. The user can exchange the connection
between OUTA and OUTB or swap the forward and backward commands in the
program.

Figure 1 Example of the connection of the motor module

Product Specifications:

Figure 2 Description of pins and switches on the module

Module ID Setting Switch: The module ID of
the LCD module can be configured with the
binary digits from the right to the left. This ID
number allows the BASIC Commander to
determine the module to be controlled during
the operation.

Pins for cmdBUS: Connect these pins
to the corresponding pins on the
BASIC Commander for controlling the
Motor Runner C module through the
BASIC Commander. While connecting,
please notice the pin assignment.
Connect Vin to the Vin on the BASIC
Commander. Incorrect pin connection
may cause damage to the module.)

BRK is connected with a button so as to allow the user to stop the
motor by pressing the button. The other terminal of the button should
be grounded.
TAC is the connection pin for tachometer. After the tachometer is
connected, the rotation speed control related commands can be used.

Motor connection pins for determining the rotation direction and speed of the
motor. Please note that if the pins M+ and M- are connected reversely, the
rotation direction will be opposite the direction specified by the command.

Motor power connection pins. Please connect
the power supply dedicated for the motor to
these corresponding pins.

The right orange light
is the data
transmission
indicator. A blinking
light indicates that the
module is
transmitting/receiving
data. The left green
light is the event
indicator. A blinking
light indicates that an
event is generated.

Symbo

l Parameter Test Conditions Min. Typ. Max. Unit VDD Conditions

IDD Operating
Current 7.5 No I/O — 5.4 — mA

fpwm PWM Output
frequency — — 0 — 10 kHz

Table 1: Characteristics of the operating current (room temperature at 25 °C)

Test Condition: TA=25°C, VM=5V-35V

Characteristic Symbol Test Conditions Limits
Min. Typ. Max. Units

Load Supply
Voltage
Range

VM Operating 5.5 - 35 V

Thermal
Shutdown
Temp.

TJ VIN = 3.25V 150 170 200 °C

Thermal
Shutdown
Hysteresis.

TJ 7 15 - °C

Table 2: Electrical Characteristics of a Motor

Overheat Protection: The overheat protection circuit is used for automatically breaking
the circuit while the internal temperature up to 165°C inside the drive IC is detected. At
this time, the motor will stop the operation. When the temperature is decreased by
8°C, the protection circuits will automatically recover the circuit connection and the
motor will continue the previous operations.

Current Limit Protection: Please refer
to the right figure. When the H-bridge
starts to output, the current will
increase as the motor rotates
increasingly. When the current value
exceeds ITRIP (as the indication
shown in the Enlargement A in the
lower right figure), the H-bridge
output will be stopped. After the next
clock of the internal oscillator is sent
out (as the INTERNAL OSCILLATOR
shown in the lower right figure) and
then the current transmission will be
continued. In such a way, the operation is repeatedly limited within the range shown in
the figure.

Precautions for Operations:
The Motor Module provides one set of connection pins for only one motor. Please
make sure that the connected motor is a DC motor.

The heat dissipation fin is not installed on the module at the factory before delivery.
Under the low current operations in an well-ventilated environment, the module can
work normally. However, when a high current passes through the module, or the high
heat cannot be dissipated through ordinary convection, it is recommended to attach
the heat dissipation fin on the module. The following table shows the approximate

time that the module can work normally under a higher current without the heat
dissipation fin at the room temperature (25°C) in a well-ventilated environment:

Current (A) Time to overheat protection (Sec)
10 >300
12 ~107
15 ~40
18 ~20

Table 3: Current vs. Overheat Protection Time (without heat dissipation fin)

Operating Temperature of the Module: 0 °C ~ 70 °C (Please confirm the operating

temperature for the motor separately)
Storage Temperature of the Module: -50°C ~125°C

Commands And Events:
The following list shows the commands dedicated for controlling the Motor Runner C
module. The command name and parameters which should be input are shown in
bold or bold-italic typefaces. The words in bold typeface should not be changed while
being input. The words in bold-italic typefaces can be filled with parameters in
properly defined format by the user. Please note that the words in uppercase or
lowercase are regarded as the same word while entering the command in the
innoBASIC Workshop.
Before executing the command for Motor Runner C, please define the corresponding
parameters and the module ID at the beginning of the program, for example:
Peripheral ModuleName As MotorRunnerC @ ModuleID

Command Format Command Function
Commands for Configuring the Motor Speed

Forward(Speed)

Set the motor to perform the forward rotation
operation at a speed specified by the value of Speed.
The value of Speed should be within 0~255 (the
higher the value of Speed is, the faster the motor
rotates).

Backward(Speed)

Set the motor to perform the backward rotation
operation at a speed specified by the value of Speed.
The value of Speed should be within 0~255 (the
higher the value of Speed is, the faster the motor
rotates).

SetSpdDC(Speed)

Set the rotation speed of the motor module at a value
specified by Speed. The motor module still maintains
the rotation in the original direction. The input value of
Speed should be within 0~255 (the higher the value of
Speed is the faster the motor rotates).

Commands for Configuring the Rotation Direction of the Motor
SetDir(Dir) Set the motor to rotate in the direction specified by

Dir. If the input value of Dir is 0, the motor rotates in
the forward direction; 1 for the rotation in backward
direction.

Stop the Motion of the Motor
Brake() Set the motor module to rapidly stop the rotation.

Stop() Set the motor module to stop the rotation.
Commands for Retrieve the Status of Settings

GetSpdDC(Speed)
Get the preset rotation speed of the motor and store it
in Speed. The returned value of Speed will be within
0~255 (the higher the value of Speed is, the faster the
motor rotates).

GetDir(Dir)
Get the preset rotation direction of the motor and store
it in Dir (0 for forward direction and 1 for backward
direction).

Commands for Setting the Tachometer and Retrieving the Rotation Speed

SetTACHPeriod(Period)

Set the motor module to count the rotation speed at a
time interval specified by Period. The input value of
Period is defined as follows:
0: 16 ms 1: 32 ms
2: 64 ms 3: 125 ms
4: 250 ms 5: 500 ms
6: 1 s 7: 2 s
8: 4 s 9: 8 s
10: 15 s 11: 30 s
12: 60 s
The motor module will count the number of pulses
measured by the tachometer within the specified time
interval. A shorter time interval means a faster update
of the measurement value; however, a larger counting
error. A longer time interval means a slower update of
the measurement value; however, a smaller counting
error.

GetTACHPeriod(Period)
Get the preset time interval for the motor to retrieve
the rotation speed and store it in Period. The returned
value of Period will be within 0~12 which represents
the time interval as defined in the previous command.

Status = TACHIn(Speed)

Get the update status of the tachometer and store it in
Status (0 represents that no new counting value is
measured since the last update; 1 represents that the
rotation speed has been updated). Meanwhile, the
number of pulses per minute retrieved from the
tachometer is returned and stored in Speed. The
returned value of Speed will be within 0~4294836225.
Please note that the time interval for updating the
returned value and the accuracy may vary depending
on the time interval for the pulse counting. *1

Commands for Configuring and Retrieving the Rotation Speed (To perform the
commands in this section, it is required to connect a tachometer for correct
operation.)

SetSpdCtrl(Dir, Speed)

Set the speed control operation. If the input value of
Dir is 0, it means forward rotation; 1 for backward
rotation. The input value of Speed should be within
0~245756250 (the larger number, the faster the
rotation speed). If the motor cannot reach the
specified rotation speed, the motor will rotate at its
maximum speed. Please note that the rotation speed
control will not be in effect after this command is
executed. It is required to execute the command
SpdCtrlOn() to enable the rotation speed control. The
final rotation speed may have error to some degree

depending on the measurement time interval specified
by the command SetTACHPeriod and the time
required to reach the target rotation speed may also
different.*1

Status = GetSpdCtrl(Dir,
Speed)

Get the status of the rotation speed control operation
and store it in Status (0 represents that the speed
control is disabled; 1 means that the speed control is
enabled). Meanwhile, the rotation direction is stored in
Dir. If the returned value of Dir is 0, it means the
motor rotates forward; 1 for backward. The rotation
speed is stored in Speed. The returned value of
Speed will be within 0~245756250.*1

SpdCtrlOn()
Enable the speed control operation according to the
rotation speed settings. Please execute the command
SetSpdCtrl in advance to configure the required
rotation speed settings before execute this command.

SpdCtrlOff() Disable the rotation speed control operation.

Status = GetSpdCtrlStatus()

Get the status of the rotation speed control operation
and store it in Status (0 represents that the target
speed is not reached or the speed control operation is
not enabled; 1 represents that the target speed is
reached).

Commands for Configuring and Retrieving the Counting Operation (To perform
the commands in this section, it is required to connect a tachometer for correct
operation.)

SetCount(Mode, Count)

Set the counter control operation. If the input value of
Mode is 0, when the counter reaches the target
number of counts, it will execute the Stop command
to stop the motor. If it is 1, when the counter reaches
the target number of count, it will execute the Brake
command to stop the motor. The input value of Count
should be within 0~65535 which represents the target
number of counts.
Please note that the module will not start the counter
operation after this command is executed. It is
required to execute the command CountOn() to
enable the counter operation.

Status= GetCount(Mode,
Count)

Get the status of the counter control operation and
store it in Status (0 represents that the counter control
operation is not enabled; 1 represents that the counter
control is enabled). The stop mode information is
stored in Mode. If the returned value of Mode is 0,
when the counter reaches the target number of
counts, it will execute the Stop command to stop the
motor. If it is 1, when the counter reaches the target
number of count, it will execute the Brake command
to stop the motor. The number of count is stored in
Count. The returned value of Count will be within
0~65535.

CountOn()
Enable the counter control operation according to the
counter control settings. Please execute the
command SetCount in advance to configure the
required counter control settings before executing this

command.

CountOnWithEvent()

Enable the counter control operation according to the
counter control settings. After the counter reaches the
target number of counts, the event
CountFinishEvent will be generated. Please execute
the command SetCount in advance to configure the
required counter control settings before executing this
command.

CountOff() Disable the counter control operation.

Status = GetCountStatus()

Get the status of the counter control operation and
store it in Status (0 represents that the target number
of counts is not reached or the counter control
operation is not enabled; 1 represents that the target
number of counts is reached).

Commands for Retrieving the Error Status and Restoring to the Default Settings

Status =
GetBrakeButStatus()

Get the status of the Brake button and store it in
Status. The returned value 0 represents that the
Brake button is not activated; 1 represents that the
Brake button is activated.
Please note that after the Brake button is activated,
this returned value will remain as 1 until the command
ClrBrakeButStatus is executed.
When the status is 1, all the motor activation
commands will have no effect.

ClrBrakeButStatus() Clear the status of the Brake button.

Status = GetFaultStatus()
Get the status of the fault detection and store it in
Status (The returned value 0 represents that no fault
is detected; 1 represent that a fault is detected) *2

EnFaultStop()

Enable the function of automatically stopping the
motor when a fault is detected. The fault includes the
motor stop due to IC overheat or the current limiting
operation due to instantaneous overcurrent. After this
command is executed, when a fault occurs, it is
necessary to execute the command ClearFault() to
re-start the motor again. The default value is
DisFaultStop().

DisFaultStop()

Disable the automatic motor stop operation when a
fault is detected. After this command is executed,
when a fault occurs, the module will automatically
execute the command ClearFault() and continue the
previously preset motor operation without stopping the
motor. The user should determine whether to stop the
motor or not by him/her-self. The default value is
DisFaultStop(). The user can determine whether the
fault continues to occur according to the
FaultProtectionEvent.

ClearFault()
Clear the fault. When the command EnFaultStop() is
executed, please make sure that the cause of the fault
is solved in advance before executing this command

to continue the operation of the motor.

RestoreStatus()

Restore the setting at the time the fault occurs. When
a fault occurs in the module, it will automatically store
all the settings at the moment. After this command is
executed, it can restore all the setting to the values at
that moment.

EnFaultEvent() Enable the fault notification event. The default value is
EnFaultEvent().

DisFaultEvent() Disable the fault notification event. The default value
is EnFaultEvent().

Table 4 :Command Table

*1 Please note that the setting value and the returned value will have different
maximum values depending on the setting value of Period.
Period=0  245756250 Period=7  1966050
Period=1  122878125 Period=8  983025
Period=2  61439063 Period=9  491513
Period=3  31456800 Period=10  262140
Period=4  15728400 Period=11  131070
Period=5  7864200 Period=12  65535
Period=6  3932100

*2 Under the condition of DisFaultStop(), after the FaultEvent is received, the
system will automatically perfoem the ClearFault() operation. So a returned
value of 0 will be retrieved when the command GetFaultStatus() is executed.

Event Activation Condition

CountFinishEvent
When the command CountOnWithEvent is activated for
the counter control operation and the counter reaches the
preset number of counts.

FaultProtectionEvent When a fault occurs and is detected.
Table 5 :Event Table

Demonstration Program:
Peripheral myMotor As MotorRunnerC @ 0 ' Set the module ID as 0

Sub Main()

Debug CLS
MyMotor.Forward(200) ' Set the motor to rotate forward at the speed of 200
Pause 3000
MyMotor.Stop() ' Stop the Motion of the Motor
Pause 3000
MyMotor.Backward(200) ' Set the motor to rotate backward at the speed of 200
Pause 3000
MyMotor.SetDir(0) ' Set the motor to rotate in the forward direction
Pause 3000
MyMotor.SetSpdDC(150) ' Change the rotation speed of the motor to 150
Pause 3000
MyMotor.Brake() ' Stop the motor rapidly

End Sub

Appendix
1. Known Problem:

2. List of the Configuration of the Module ID Switch:

1 0234
0

1 0234
8

1 0234
16

1 0234
24

1 0234
1

1 0234
9

1 0234
17

1 0234
25

1 0234
2

1 0234
10

1 0234
18

1 0234
26

1 0234
3

1 0234
11

1 0234
19

1 0234
27

1 0234
4

1 0234
12

1 0234
20

1 0234
28

1 0234
5

1 0234
13

1 0234
21

1 0234
29

1 0234
6

1 0234
14

1 0234
22

1 0234
30

1 0234
7

1 0234
15

1 0234
23

1 0234
31

