
BASIC Commander® &
InnoBASIC™ Workshop

Reference Manual

Version 2.0

Trademark

Innovati® , logo and BASIC Commander® are registered trademarks of Innovati, Inc.

InnoBASIC™ and cmdBUS™ are trademarks of Innovati, Inc.

Copyright © 2008-2012 by Innovati, Inc. All Rights Reserved.

Due to continual product improvements, Innovati reserves the right to make modifications to its

products. Documents, texts, modules, parts and item quantities are subject to change without

prior notice. Innovati does not recommend the use of its products for application that may

present a risk to human life due to malfunction or otherwise.

No part of this publication may be reproduced or transmitted in any form or by any means

without the expressed written permission of Innovati, Inc.

Printed in Taiwan

Disclaimer

Full responsibility for any applications using Innovati products rests firmly with the user and as

such Innovati will not be held responsible for any damages that may occur when using Innovati

products. This includes damage to equipment or property, personal damage to life or health,

damage caused by loss of profits, goodwill or otherwise. Innovati products should not be used

for any life saving applications as Innovati
�
�
�
�
�
�
�
�

������
������
������
������
������
������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

s products are designed for experimental or

prototyping purposes only. Innovati is not responsible for any safety, communication or other

related regulations. It is advised that children under the age of 14 should only conduct

experiments under parental or adult supervision.

Errata

We hope that our users will find this manual a useful, easy to use and interesting publication, as

our efforts to do this have been considerable. Additionally, a substantial amount of effort has

been put into this manual to ensure accuracy and complete and error free content, however it is

almost inevitable that certain errors may have remained undetected. As Innovati® will continue

to improve the accuracy of its system manuals, any detected errors will be published on its

website. If you find any errors in the manuals please contact us via email

service@innovati.com.tw. For the most up-to-date information, please visit our web site at

http://www.innovati.com.tw.

Contents

Contents
Preface .vii

Welcome .vii

Microcontrollers Everywhere .viii

Innovati® Approach .ix

Chapter 1 System Overview .1

Introduction .1

InnoBASIC™ Programming Language .2

BASIC Commander® .3

Peripheral Modules .4

Education Board .5

How to Use this Reference Manual .6

Chapter 2 Installation and Getting Started .7

Introduction .7

Installing the InnoBASIC™ Workshop .8

Hardware Installation .9

Producing Your First Program .9

What Has Just Happened? .13

Chapter 3 InnoBASIC™ Workshop .15

Introduction .15

Screen Layout .15

File View Window .16

Program Editing Window .17

Output Window .17

Function View Window .17

Terminal Window .17

Steps to Creating a Program .19

Editing the Program .20

i

i i

Contents

Compiling and Building the Program .20

Debugging your Program .21

Menus and Commands .21

File Menu .21

Edit Menu .22

Comment Selection .22

Uncomment Selection .22

Goto Line .22

View Menu .23

Build Menu .23

Compile .23

Build .24

Tools Menu .24

Fonts Setting .24

Print Fonts Setting .24

Preferences .24

Window Menu .25

Help Menu .26

Chapter 4 Hardware Description .27

Introduction .27

BASIC Commander® Module .27

BASIC Commander® Pinout .28

Education Board .30

Power Supply .31

Peripheral Modules .33

Handling Precautions .35

Chapter 5 InnoBASIC™ Programming Language .37

Introduction .37

Statements .37

Comments .38

Identifiers .39

Contents

Keywords .39

Labels .39

Constants, Variables and Data Types .39

Type Conversions .42

Literals .42

Boolean Literals .42

Integral Literals .42

Floating-Point Literals .43

String Literals .43

Character Literals .43

Array .43

Operators .45

Arithmetic Operators .46

Relational Operators .46

Bitwise Operators .46

Logical Operators .47

Assignment Operators .47

Program Control Flow .47

Conditional Statements .48

IF...THEN...ELSE Statements .48

SELECT...CASE Statements .49

DO...LOOP Statements .51

FOR...NEXT Statements .54

GOTO Statements .57

Invocation Statements .57

SUB and FUNCTION .57

Sub Procedures .58

Functions .58

Parameters .59

Peripheral Module Programming Features .60

Declaration of Peripheral Modules .60

Invocation of Peripheral Module Commands .61

EVENT Procedures .61

i i i

i v

Contents

Declaration of Peripheral Modules EVENT .61

Sample Project Using the Peripheral Modules .62

Chapter 6 Command Set .65

Introduction .65

Types of Commands .65

Programming Command Conventions .66

Categories .66

Command Summary .70

Preprocessor Directives .71

ABS .74

ACOS .75

ASIN .76

ATAN .77

ATAN2 .78

BUTTON .79

BYTE2FLOAT .83

CALL .84

CEIL .85

CHECKMODULE .86

COS .88

COUNT .89

DEBUG .92

DEBUGFILE .97

DEBUGIN .98

DEBUGINFILE .100

DIM .101

DO...LOOP .103

DWORD2FLOAT .105

ENUM...END ENUM .107

EVENT...END EVENT .109

EXP .111

EXP10 .112

Contents

FLOAT2BYTE .113

FLOAT2DWORD .115

FLOAT2INTEGER .117

FLOAT2LONG .119

FLOAT2REALSTRING .121

FLOAT2SHORT .122

FLOAT2STRING .124

FLOAT2WORD .125

FLOOR .127

FOR...NEXT .128

FREQOUT .130

FUNCTION...END FUNCTION .132

GETDIRPORT .134

GOTO .136

HIGH .138

I2CIN .141

I2COUT .145

IF...THEN...ELSE .150

IN .152

INPUT .154

INTEGER2FLOAT .156

KEYIN .157

KEYSCAN .158

LCASE .159

LCDCMD .160

LCDIN .166

LCDOUT .168

LEFT .170

LEN .172

LOG .173

LOG10 .174

LONG2FLOAT .175

LOW .177

v

v i

Contents

MID .178

OUTPUT .179

PAUSE .180

PERIPHERAL .182

PULSEIN .184

PULSEOUT .187

PWM .189

RANDOM .192

RCTIME .196

READPORT .199

RESETMODULE .201

RETURN .202

REVERSE .204

RIGHT .206

SELECT...CASE .207

SERIN .209

SEROUT .213

SETDIRPORT .217

SGN .219

SHORT2FLOAT .220

SIN .221

SQRT .222

STRING2FLOAT .223

STRREVERSE .225

SUB...END SUB .226

TOGGLE .227

UCASE .228

WORD2FLOAT .229

WRITEPORT .230

Appendix .233

Appendix A ASCII Table .235

Appendix B InnoBASIC™ Keywords .237

Contents

v i i

v i i i

Contents

i x

Preface

Welcome

We are delighted that you have chosen to purchase our Innovati® products. Whether

you are a newcomer to microcontrollers or whether you have arrived at this point with

some experience under your belt, we feel assured you will enjoy immensely the

unique Innovati® approach to this fascinating area of electronics. This manual will

give you the information you need to get going and how it is used will depend upon

your skill level and previous experience. Users who are new to the world of

microcontrollers would benefit from some selected other background reading on basic

electronics and on the BASIC language before jumping in. Those with some

electronic and programming experience could be more selective in what they read

from this manual. However, wherever your interests lie and no matter what level you

find yourself at, the Innovati® team sincerely wish you a fascinating journey into the

world of microcontrollers.

The unique Innovati® approach in supplying high functioning modules allows

you to develop hardware applications with superior functions running in a very short

space of time and with a minimum of design effort. As to what you could achieve,

well how about remote camera control in your model off-road explorer, or a

sophisticated automatic lighting control system for your home, or perhaps a

programmable robot, etc. Or perhaps you are just interested in educating yourself

about microcontrollers. Or maybe you are a high school teacher and would like to

Preface

x

introduce the subject of microcontrollers into your science curriculum. Make no

mistake, as the Innovati® system contains an industrial standard commercial high

quality microcontroller at its core, the possibilities and applications are truly endless,

and limited only by your ingenuity and experience. Whatever your interests may be,

we are sure that the Innovati® system will not only result in the creation of ingenious

and creative inventions and devices but will also be a real learning experience into the

workings of microcontrollers.

Microcontrollers Everywhere

From that first cup of coffee and slice of toast you made yourself this morning to the

alarm clock you set when you went to bed that night, your day has almost certainly

been influenced and made more convenient by numerous microcontrollers in these

electrical home appliances.

A car probably contains numerous microcontrollers, controlling everything from

the mundane air conditioning and heating to the more sophisticated suspension and

engine management systems. Several of the instruments on the dashboard will

certainly contain microcontrollers to indicate to you that all is well, or perhaps that all

is not well with your car! Did you watch TV, or perhaps a DVD? Undoubtedly these

household appliances and their remote controllers contain microcontrollers. What was

in the past a device intended for industrial applications or a tool for research

applications in a laboratory has now found its way into all aspects of our lives. So if

microcontrollers are so useful and can be used everywhere, why am I not able to use

them for my own projects? Well now you can with this unique and high functioning

Innovati® system. Perhaps you would like to put some automatic control into your

model railway, or build a sophisticated alarm system for your home, or maybe even

some unique automotive projects. Or how about some solar power projects, the list

really can go on and on and is only limited by your creativity and imagination.

Preface Preface

x i

Innovati® Approach

The development of microcontroller projects can be approached from many angles.

The traditional way would be to write your software using a low level assembly

language, or use a so-called high-level language, which would not offer much

convenience in terms of programming, with their corresponding long learning curves.

Along with this, hardware for your specific application would need to be designed to

interface the microcontroller to the real world. This could consist of things such as

LCD displays, switches, LEDs, etc. All of this takes time and perhaps is an approach

that is OK for industrial companies designing specific and specialized high volume

products. However, Innovati® has taken the toil and time out of this approach by

providing an intuitive BASIC style of programming language which we call

innoBASIC™, and which is featured with sophisticated commands through which

conventional functions can be accomplished in an easy manner. Additionally, through

these commands, innoBASIC™ is featured with a most unique capability to interface

Innovati's peripheral modules which further integrates both hardware and software

into one. Complicated hardware control will be seamlessly migrated into the software

world. In this way the amount of time and effort you need to get your idea up and

running from a concept to a real working project is drastically reduced.

Microcontrollers no longer are something just for the professionals, but can now

easily be used and programmed by all.

Preface

x i i

Preface

1

System Overview

Introduction

The system is composed of several different parts, which all work together to form the

overall system. At the top is the innoBASIC™ Workshop environment which is a

software utility running in the PC. The user's program is edited with our powerful

featured language innoBASIC™ editor which integrates all the resources perfectly.

After editing, the program is compiled and downloaded from within this environment.

During run-time, a Terminal Window is available as the Human Interface or Debug

console. Then via the USB interface, the finished program code is downloaded to the

BASIC Commander® Single Board Computer, which is the heart of the system. This

small dual in-line Printed Circuit Board, PCB for short, is the unit where your

program will be stored and run. After the program is stored in the program memory,

the Single Board Computer is set to run.

There are three kinds of resources in which the BASIC Commander® can be

used. First is the General-Purpose I/Os, for which built-in commands are provided for

sophisticated functions; second is the cmdBUS™, where up to 32 Innovati® featured

Peripheral Modules can be connected. These totally object-oriented modules make

this functional expansion one of the most special features of the system. Thirdly is the

debug interface, where information can be exchanged between the BASIC

Commander® and the innoBASIC™ Workshop Terminal Window, not only for

debugging but also for human-machine interfacing.

Chapter 1 System Overview

11

InnoBASIC™ Programming Language

With the usual focus on ensuring that user projects are up and running in a minimum

amount of time, the innoBASIC™ programming language was developed by Innovati's

software engineers to ensure that users can easily and quickly learn the rudiments of

programming techniques. Although innoBASIC™ is easy to use, it should not in any

way be viewed as a functionally restricted language. It is in fact a highly capable and

functionally rich language with a host of useful features. While based on the

universally popular BASIC language it has its own special characteristics, one of

Chapter 1 System Overview

2

U
S

B

GIOs

On Line

Off Line

innoBASIC Workshop:
Editor, Compiler,
Downloader & Human
Interface Debug Window

USB:
Program Download and Run-
time Human Interface

cmdBUS:
Up to 32 Innovati’s
Object-oriented
Peripheral Modules

Built-in Commands:
Featured for
General Purpose I/O
Functions

General I/O
Circuits

cmdBUSTM

TM

Peripheral
Module

Peripheral
Module

Peripheral
Module

Figure 1-1 BASIC Commander¤ and innoBASIC“ Workshop System Overview

3

which is the easy ability to control the external hardware modules. The InnoBASIC™

language does not employ the traditional interpreter methodology but rather uses a

compiler methodology, which dramatically increases the execution speed.

BASIC Commander®

The BASIC Commander® is the central hardware unit of the system and is actually a

miniature Single-Board Computer. On this small electronic board is a high

performance microcontroller integrated circuit device, together with some other

peripheral components such as those required for the power supply, PC interfacing,

etc. When editing the program for your personal project, the BASIC Commander®

will be connected to your PC with the supplied USB cable to enable easy program

downloading and debug to be implemented. However, when the program development

has been completed, the BASIC Commander® can of course be disconnected from the

PC and run independently within your project without the PC connection.

Chapter 1 System Overview

Figure 1-2a 24-pin BASIC Commander® Figure 1-2b 32-pin BASIC Commander®

As the BASIC Commander® contains sensitive electronic components, handling

with care is required to eliminate damage due to electrostatic discharge, often known

by the abbreviation ESD. When inserting into a socket or a breadboard, ensure that the

pins are in the right position, otherwise damage to the BASIC Commander® may

occur. The I/O input voltage levels must not exceed their maximum rating of 6.0

Volts, exceeding this level may also cause damage to the I/O pins on the BASIC

Commander® itself.

Peripheral Modules

The use of modules is one of the unique features of the Innovati® system. Comprising

of modules such as those for I/O expansion, LCD display driving, motor control, GPS

and so on, these external plug and play modules give the user a means of easily

expanding their systems to incorporate a host of complex and useful features. The

name Innovati® Peripheral Modules is a collective name for an ever-growing list of

plug-in modules. Check Innovati's web site to find about the latest module

developments. Each Peripheral Module has its own product name, which is not only

used for product identification, but also used during programming. For example, the

LCD module has an identification name "LCD2X16A".

For each of the Peripheral Modules, you will need a flat cable to connect the

module to the cmdBUS™ on the Education Board.

4

Chapter 1 System Overview

Figure 1-3a LCD2X16A front view Figure 1-3b LCD2X16A rear view

5

Caution must be taken when plugging-in the cable, as an incorrect connection

could cause serious damage to the device.

Education Board

There is also an Education Board where custom-built projects can be constructed and

in which a socket is included for plugging in the BASIC Commander® Single Board

computer. This Education Board is equipped with a breadboard and with power

management, providing users with a solderless means of constructing their projects.

You may simply use jump wires to connect the power and I/O pins from the female

header to the breadboard.

Chapter 1 System Overview

Figure 1-5 Education Board

Figure 1-4 6-wired cmdBUS™ cable

As the Education Board comes without the BASIC Commander®, you may

choose either a 24-pin or a 32-pin version of BASIC Commander® to plug into the

Education Board. Be sure to check the insertion instruction drawn on the Education

Board as incorrect alignment may cause serious damage to the BASIC Commander®.

How to Use this Reference Manual

To get ultimate enjoyment from your system, please take time to examine the manual

and familiarize yourself with the key components of the system. Those with some

microcontroller experience will no doubt want to push forward faster and could

probably skip the introductory chapters. For those who are new to this fascinating

area, we sincerely recommend that you sit down and work your way through the book

as time spent at this initial learning stage will be a good investment for the future

when you get into the real nuts and bolts of more complicated projects. However, we

may view the reading of manuals, for some it is seen as an enjoyable learning process

or for others as a necessary evil, to obtain essential information, don't let it stand in

the way of having fun with the system.

Chapter 1 System Overview

6

22

7

Installation and
Getting Started

Introduction

This section is dedicated to getting you up and running as quickly as possible and will

demonstrate the basic functions of the system such as program writing and editing,

compiling, downloading and debug. It is necessary to have either a BASIC

Commander® or Education Board connected as without this the program cannot be

downloaded.

Of course it is necessary to have an IBM or Compatible PC running under

Windows 98 or above version/2000/ME/XP/Vista. A CD-ROM Drive is

recommended, you can use the CD-ROM provided to install the innoBASIC™

Workshop. A USB 1.1 / 2.0 port is a must, which is essential for your program

downloading and debugging.

Chapter 2 Installation and Getting Started

Installing the InnoBASIC™ Workshop

Insert the supplied CD into your CD-ROM Drive and follow the on-screen

instructions to install the innoBASIC™ workshop. Another and perhaps better method

would be to go to the Innovati® website and download the latest versions of the

innoBASIC™ workshop software. Although the supplied CD software will run

perfectly well, using the website version will ensure you have the latest up-to-date

version of the software. Installation should be trouble free and you should be

presented with the innoBASIC™ workshop window after installation and running.

This is the area in which you will work to write and edit your program.

Chapter 2 Installation and Getting Started

8

Figure 2-1 The innoBASIC™ Workshop Window

Hardware Installation

Using the supplied USB cable, connect either a BASIC Commander® or the Innovati®

Education Board to a USB socket on your PC. As the USB cable will supply the

necessary power to the hardware, no other power supply is necessary. Nevertheless,

the USB port should not be seen as a major power provider for your applications. If a

total of more than 500mA is demanded by your application, you should take proper

care of power management by using an external power supply.

By following the on-screen instructions, where you will see the usual installation

screens for USB hardware installation, the hardware drivers should be successfully

installed.

Producing Your First Program

With the hardware and software successfully installed we are now ready to do

something with the system, in other words to write our first program. The following

steps should enable you to do this:

1. Open a new file using the File/New menu command or by selecting the "New"

Icon. You will now see a blank area appear on the screen where the cursor will be

flashing. This is the area where the program can now be written. You will also see

the name Untitle1 appear which is the name the system will assign to your new

file. Of course it can be changed to your own selected name but more about this

later.

9

Chapter 2 Installation and Getting Started

Figure 2-2 Connecting the Hardware

TO PC USB Port mini USB B

2. In this blank editing area enter the instructions shown below. Don't be too

concerned at this stage about what the instructions mean, this information can be

picked up at a later stage, however it is important to copy the instructions exactly:

1 0

Chapter 2 Installation and Getting Started

Sub main ()

Dim s As String *10

Debugin "Please enter your name: ", s, CR

Debug s, ", Welcome to the Innovati World!"

End Sub

Figure 2-3 Editing the Program

1 1

3. This program should now be saved using the usual File/Save menu commands or

using the standard Save File Icon. You can select the location where the file is to

be placed using the directory structure in the File View Window. The file can be

placed into the "Example" folder which has been created under the innoBASIC™

Workshop folder as shown. Of course it can be placed into any other folder you

may have created using the Windows File Manager. Note that the file should be

saved with the extension ".inb", which stands for innoBASIC™.

4. Now the program can be compiled, which is implemented by selecting the

Compile commander under the Build menu or by clicking on the Compile Icon. If

the program has been written and edited correctly, you will receive a message in

the Output Window telling you so, if not an error message will be received, and

your program should be modified. A simple comparison of the above instructions

Chapter 2 Installation and Getting Started

Figure 2-4 Saving the Program

with what you have typed in should reveal where the error lies, however the error

messages will actually give an indication as to where the error is located. Besides

the Compile command, you may select the Build icon, which will compile the file

first, and if no error is found, the compiled machine code will be downloaded via

the USB cable into the BASIC Commander®. You may see a green LED on the

BASIC Commander® flashing indicating that the download process is in progress.

5. Your program has been downloaded and is presently resident in the non-volatile

memory of the BASIC Commander® and will now run automatically. You should

see a message in the Terminal Window asking you to enter your name. Please

enter your first name here and then press Enter. The system should respond with a

welcome message containing your name. You should note at this stage that all

interaction between yourself and the BASIC Commander® hardware is taking

place through the Terminal Window.

Chapter 2 Installation and Getting Started

1 2

Compile Build
Figure 2-5 Compiling and Downloading the Program

1 3

If you have succeeded in implementing the above example, we extend our

congratulations and hope that you can now move on with more confidence. By

reading more of the manual you will understand more about the capabilities of the

system, hopefully guiding you into the development of more complex projects and

applications.

What Has Just Happened?

If you were successful in completing the example, what you have actually done is to

have gone through the full process of program writing, editing, compiling,

downloading, debugging and execution. It may seem a very simple example program,

but actually it has still utilized all of the steps required in more complex applications.

It has also demonstrated how the Terminal Window is used for direct communication

between the user and the BASIC Commander® hardware. At this stage you may like

to use this opportunity to modify your simple program to provide more complex

operations, perhaps by modifying the instructions or adding a few new ones of your

own. You may choose rather to continue to study the manual in more depth before

proceeding.

Chapter 2 Installation and Getting Started

Data Input Area

Figure 2-6 Welcome Message in the Terminal Window

Chapter 2 Installation and Getting Started

1 4

33

1 5

InnoBASIC™ Workshop

Introduction

After working through the previously provided example program, it is now time to get

down to learning more about the system and getting to work on some more serious

projects. Each time the innoBASIC™ workshop system software is executed the result

will be shown on the screen display as shown in the diagram. As the name

"Workshop" suggests, this is the area in which you will work to create, debug,

compile and download your program. As you are probably familiar with the Windows

operating system and its many standard programs, you will no doubt recognize many

of the standard function icons shown on the screen. In an area called the Program

Editing Window you will write and edit your program and in the area called the

Terminal Window you will communicate with the BASIC Commander® hardware.

Screen Layout

The screen is subdivided into several main individual working area windows each

with their own functions. These are listed below with a short description.

Chapter 3 InnoBASIC Workshop

File View Window
This window shows the familiar windows file manager display from which your

working program can be selected. Here you can select different directories to retrieve

already stored files. Just below the file manager area are listed all the files in the

selected folder. This area can be selected to display only the innoBASIC™ files, which

are the files with an .inb extension next to the filename, or to display all files which is

the *.* option. If an innoBASIC™ file is selected by double clicking its filename, the

file contents will be displayed in the area to the right of the File View Window.

Optional filename tabs displayed above the file contents window, which can be

selected to show its contents.

Chapter 3 InnoBASIC Workshop

1 6

File View Window Program Editing Window Function View Window

Terminal Window Output WindowProgram List

Figure 3-1 Workshop Windows and Menus

1 7

Program Editing Window
This is the area in which you will write and edit your project's program. If no file is

selected from the File View Window, this area will remain blank, however after a file

is selected, its contents will be displayed within this window. As the user's project will

often use several files, more than one file can be opened but only the contents of one

file can be displayed in this area. Each opened file will have a representing tab and all

tabs will be listed at the top of the Program Editing Window. The tab which is

highlighted represents the file whose contents are presently displayed. Selecting other

tabs with the mouse gives convenient editing access to other open files.

Output Window
When your program is compiled or downloaded, the various steps that the system

goes through and the status of the system are shown within this window. Any errors

occurring during compilation or downloading will be displayed here.

Function View Window
This area basically shows the list of functions or subroutines within the main program,

giving a kind of index to the overall program. Rather than searching through what

could be a long program, this window area displays the main subroutines within the

program. By clicking on the name of the subroutine in the Function View Window, the

cursor will automatically jump to the subroutine location in the program.

Terminal Window
The result of the execution of any DEBUG or DEBUGIN command will be displayed

in this area. This is the place where the BASIC Commander® communicates with the

user or where the user sends data to the BASIC Commander®. In the Terminal

Window you will see three function icons, Start, Stop and Clear. The Clear function is

used to clear the Terminal Window screen only, and has no effect on the BASIC

Commander® or program operation. The Debug Start will execute a reset to the

BASIC Commander® and cause the program to run again from the first instruction.

Chapter 3 InnoBASIC Workshop

The Stop function will cease the communication process between the BASIC

Commander® and Terminal, which are implemented with the DEBUG or DEBUGIN

commands.

Some of these windows possess their own control icon which allows the window

to be displayed or switched off. Each icon has a simple toggle function, click once to

turn on the window and click again to turn off. The same on/off windows function are

also available from within the View Menu.

Try pressing each of the window toggle icons in turn and you will see how each

window can be displayed or hidden on the overall innoBASIC™ Workshop window.

You may prefer to work with all of the windows on as shown.

Chapter 3 InnoBASIC Workshop

1 8

File View Window Icon Output Window Icon

Function View Window Icon
Terminal Window

Figure 3-2 Workshop Window Control Icons

1 9

Steps to Creating a Program

For new beginners the creation of your first real program and application is perhaps a

daunting prospect. This is simply due to a series of unknowns, which with an

explanation on our part and a bit of effort on your part can quickly be dispelled. From

the moment you install your system to the time you finally get your program and

application running, there are certain steps which must be gone through to achieve the

desired results. If you have worked through the simple example provided, you will

have seen what these steps are, now for more complex examples you will soon start to

see those previous computing mysteries and fears vanish before your eyes.

Chapter 3 InnoBASIC Workshop

Program Editing

Compile Program

Download Program

Debug Program

Input Instructions

Converts Instructions to
Machine Code

Place machine code into
BASIC Commander¤

Detect Errors using
Terminal Window

Figure 3-3 Program Creation Steps

Editing the Program
Similar to a simple text editor or word processor, the Program Editing Window is first

used to input your program commands line by line. When you input, try and type in

everything correctly, however don't worry too much if you make errors, these will be

picked up later by the syntax checker. We also recommend you don't type in your

whole program right away. Try a few statements at first, download it and run to see

that everything is going according to plan. By breaking things up into separate

application units, the overall project becomes much easier to manage, and with one

section running correctly you can confidently move on to the next section.

Compiling and Building the Program
After your program has been entered into the innoBASIC™ Workshop, it must be

converted into what is known as machine language before being downloaded into the

BASIC Commander®. This process of conversion to machine language is known as

Compiling; however before conversion it will first check the program contents for

errors. If errors such as wrongly typed instructions are entered, the system will

produce a corresponding error message, which will be displayed in the Output

Window. Double Clicking on the error message in the Output Window will indicate in

the Program Editing Window in which line the error is located. The error message

itself should also contain some information regarding the nature of the error. The

process known as "Build", will actually repeat all the process steps in the compiling

action but will then take the compiled program and after some manipulation transmit

it to the BASIC Commander® hardware via the USB cable link. During program

editing, as users may not always want to send their program to the BASIC

Commander®, and may only wish to check for correct program entry, the Compile and

Build functions are provided with their own separate Icons.

Chapter 3 InnoBASIC Workshop

2 0

2 1

Debugging your Program
Well in theory, after finishing your hardware and writing your program, it should just

be downloaded into the BASIC Commander® and after running, everything would be

fine. It doesn't quite work out that way, as unless the program is a very simple one, it

is rarely likely to work the way you want it the first time. There will invariably be

errors within the program that will have to be removed to achieve the desired

application result, a perfectly normal process known as debugging. Thankfully the

innoBASIC™ Workshop is equipped with debug tools, for which the Terminal

Window is heavily utilized to assist with the highlighting of problem areas and to get

your program up and running in as short a time as possible. The debugging of

programs, seen by some as the real fun part of project development, is invariably an

invaluable learning opportunity, and is in fact the area where you will learn the most

about microcontroller systems. Patience and clear thinking during this stage will be

well spent and lead to worthwhile experience for future and more complex projects.

Menus and Commands

This is the core of the innoBASIC™ Workshop and the place where a greater part of

your development work will be done. With a format very similar to that of other

Windows based programs, most users should be well acquainted with their style. The

innoBASIC™ Workshop window is subdivided into several sections, which you

should become familiar with to get the best use out of the system.

File Menu
This is virtually identical to most other Windows based programs with the usual

Open, Close, Save, Print functions, etc. A useful feature is the list of recently opened

files allowing easy and rapid selection.

Chapter 3 InnoBASIC Workshop

Edit Menu
With the usual Windows Cut, Copy, Paste, Find and Replace functions are also the

Redo and Undo function to allow easy recovery of typed errors. There are some

additional functions in this menu however that requires further explanation:

Comment Selection
This useful command enables users to easily, with a few clicks of the mouse,

comment out a single line or multiple lines of the program. By making a line of

program a comment, it provides a simple method of forcing the program to ignore

these instructions when the program is run, which is an extremely useful technique

during program debug. Of course the same result can also be obtained by typing the

comment instruction operator, which is a single quote character, in front of each

statement.

Uncomment Selection
This command simply removes the comment operator from any program instruction

lines which have been previously setup as comments. It forms a useful way of

removing multiple lines of comments from a program without having to individually

edit each line.

Goto Line
When programs are large it can be quite a task to jump to other locations, however if

the line number of the program is known, this menu command can be used to directly

jump to a specific line. The line numbers of the program will be generated

automatically by the system and can be displayed by selecting the Line Counter

option from within the View Menu or by selecting its own icon in the Editor Bar.

Chapter 3 InnoBASIC Workshop

2 2

2 3

View Menu
Here is located the controls for whatever sections of the innoBASIC™ Workshop you

wish to display or hide. By selecting the listed items, various menu bars or functional

windows can be displayed or hidden. One worthy of a special mention is perhaps the

Line Counter, which can display line numbers next to each instruction in your

program. These numbers are automatically generated by the software and cannot be

changed by the user. Note also that for the window display controls, an icon also

exists in the Editor Bar, providing an easier control option for the displaying or non-

displaying of the functional windows.

Build Menu
Here you can find the controls to compile your program and to download it from the

PC into the BASIC Commander®.

Compile
During the early stages of program editing and debug, it is not usually necessary to

always download the program, hence, under the Build main menu is the option to

compile only. The compiling action takes the innoBASIC™ instructions from your

program and transforms them into machine code language. Any errors in your

program such as spelling or wrong specifications will be indicated in the Output

Window. The source of the error in your program can be located by double clicking on

the error message in the Output Window, which will place the cursor on the program

line containing the error. By providing this compile only menu command you can save

time by not running the download process, if all you want to do is check the basic

syntax of your program.

Chapter 3 InnoBASIC Workshop

Build
The other option, which is known as Build, will in addition to compiling your

program also give you the option to download it to the BASIC Commander®.

Tools Menu
Here you can find the settings of Editor, Fonts, Colors and Terminal Window. Please

click on the tags for their relevant settings.

Fonts Setting
The fonts option in the tools menu, is as the name suggests, a means to control the

size and style of the fonts used in your program. This option is for the fonts in the

Program Editing Windows.

Print Fonts Setting
This option allows you to choose the style and size of the fonts for printing.

Preferences
The Preference option in the Tools Menu allows you to customise the operation of the

innoBASIC Workshop to your own liking. The Editor preferences offer you various

choices such as whether you wish to display line numbers on your program and if you

would like a color bar to indicate the present cursor line. The Fonts preferences offer

you a means to control the size and style of the fonts used in the Program Editing

Windows. The Colors preferences allow you to customise your Workshop Window in

your own color scheme. The Sample Box will enable you to preview your color

choices before finalising your choice by clicking on Enter. The Set Default option will

allow you to return to the colors chosen when the system was first installed. The

Terminal Window preferences allow you to set the maximum display lines and

characters in each line.

Chapter 3 InnoBASIC Workshop

2 4

2 5

Window Menu
The conventional window menu functions are also provided here. You can cascade or

tile the windows to help you reference among different files. You can use the new

window function to open another identical file or use the split function to split the file

into windows, which helps you to reference the context in the same file. You may also

select "Tabbed MDI" to display the file in a tabbed format, which saves space when

many files are opened.

Chapter 3 InnoBASIC Workshop

Figure 3-4 Tools Menu Preference Option

Help Menu
In the Help Menu, you can use the Help Topics function to find the terms or

explanations about the functions that you may encounter when working with the

InnoBASIC™ Workshop. It is meant to be provided as a quick reference, if topics are

either not mentioned or not explained clearly, please refer to the user's manual for

more detailed information. You can use the About function to check the version of the

InnoBASIC™ Workshop you are currently using.

Chapter 3 InnoBASIC Workshop

2 6

44

2 7

Hardware Description

Introduction

Here you find information on the Innovati® system hardware, the most important part

of which is the BASIC Commander®. This is what is known as a Single Board

Computer or SBC for short. In addition to this is the Education Board, into which the

BASIC Commander® can be plugged and to which additional electronic components

can be connected to expand your program possibilities. And then there are the

modules, which are the feature packed hardware units that offer greatly enhanced

intelligent control to your projects.

BASIC Commander® Module

The BASIC Commander® is a complete and fully self-contained Single Board

Computer. Often known by its abbreviated name of SBC, it is the unit that provides

control for your total project. At its heart is a high quality industrial grade commercial

microcontroller complete with memory, clock circuits, power control and USB

interface. Its outline is shown in the figure.

Chapter 4 Hardware Description

When the PC is connected to the BASIC Commander® using the supplied USB

cable, its power supply will be sourced from the PC.

BASIC Commander® Pinout
The BASIC Commander® comes in two forms; 24-pin and 32-pin modules. The width

between the pins are the standard 0.1 inch pitch, which means the modules can be

conveniently plugged into standard PCB sockets and standard breadboarding circuit

boards. Each pin has its own individual functions, please see the table below.

Chapter 4 Hardware Description

2 8

Figure 4-1a 24-pin BASIC Commander®

Figure 4-1b 32-pin BASIC Commander®

Pin1

Pin12

Pin24

Pin13

Pin1

Pin16

Pin32

Pin17

2 9

If you use a single BASIC Commander® in your application, be sure to connect

the unregulated 6~12 VDC power to pin VIN or connect a regulated 5V power supply

to the VCC pin. The SDL, SDA, EVT, SYN along with the VCC and GND pins

constitute the cmdBUS™. Keep the cable or wiring length as short as possible,

otherwise the extra capacitance introduced by long cables or wiring may eventually

slow down the cmdBUS™ performance. A maximum of 32 Peripheral Modules can be

connected to the cmdBUS™.

The BASIC Commander® hardware has two LEDs, which are off during normal

operation. When the green LED is lit, it indicates that communication between the PC

and the BASIC Commander® is taking place, while if the yellow LED is lit, it

indicates that communication between the BASIC Commander® and a Peripheral

Module is taking place.

Chapter 4 Hardware Description

24-Pin
1
2
3
4

5~12
-
-

13~20
21
22
23
24

32-Pin
1
2
3
4

5~12
13~16
17~20
21~28

29
30
31
32

Pin Name
SDA
SCL
EVT
SYN

P7~P0
P23~P20
P16~P19
P8~P15

VCC
RES
GND
VIN

Pin Function
cmdBUS™ Data Pin
cmdBUS™ Clock Pin
cmdBUS™ Event Pin
cmdBUS™ Synchronization Pin
General Purpose I/O pins
General Purpose I/O pins
General Purpose I/O pins
General Purpose I/O pins
5V Power Pin (or regulated 5V of VIN or USB)
Reset Pin of the BASIC Commander®

Ground Pin-Common Ground
External Power Supply (unregulated)

Education Board

For most projects, users will require to add some of their own peripheral components.

For experimental or learning purposes or perhaps for project designs at an early stage

in their development, users may find it convenient to use the supplied Education

Board. Here a small breadboard is supplied to provide a convenient means of

connecting external components to the BASIC Commander. Components such as

external switches, LEDs, resistors, capacitors, and potentiometers can be conveniently

connected here eliminating the need for soldering and allowing easy debugging and

adjustments. Here the breadboard supplied can be used to easily interconnect external

components to the BASIC Commander and for quick and easy changes to be made

without the inconvenience of soldering or re-soldering. The external components

connect to the BASIC Commander through the female headers next to the breadboard.

The BASIC Commander® should be inserted to the 32-pin socket before the

power is turned on. Please note that the BASIC Commander® comes in two forms, 24-

pin and 32-pin. When inserting the BASIC Commander®, check the drawing on the

board for correct direction and alignment.

Chapter 4 Hardware Description

3 0

VCC Power Indicator

VDD Power Indicator

Socket for 24/32-pin BASIC Commander¤

Reset Button
Power Selector

I/O Pins (Female Header)

VCC Pins (Female Header)

VIN Pins (Female Header)

VDD Pins (Female Header)

Breadboard

0:Off; 1:Board On and X4 Off; 2:All On;

Adaptor Power Jack

DC Power In

9V Battery Snap

4 cmdBUS Connectors

X5: Servo Power Jumper
Soruce from VDD or VIN

GND Pin (Female Header)

X4: Four Servo Connectors
(W: Signal, R: Power, B:GND)

Figure 4-2 Education Board

3 1

Take exceptional care to ensure that the BASIC Commander® is inserted

correctly into the Education Board socket, otherwise irreparable damage may occur.

Only insert the BASIC Commander® with the power off and double check for correct

insertion before applying power.

Power Supply
The power supply can come from one of three sources. First, it can come from the

USB port, where the power is denoted as VCC, which you can find by the pin header

next to the breadboard. However, if the power is supplied through the USB port

directly, a maximum of 500 mA can be drawn from the USB Port after they are

configured by the host system software, but must not draw more than 100mA until

they are configured. Therefore, for more power consumptive applications, power

should be supplied externally. When the VCC from the USB port appears, an LED

indicator next to the BASIC Commander® socket will illuminate.

Secondly, power can be sourced from an external power supply connected to pin

VIN, which may come from a direct power input to the white 2-pin connector, or from

a power adapter with a rating of 6-12VDC with central positive, or a 9V Battery

connected to the battery snap connector. No matter which external power resource is

used, it is regulated to 5 Volts and denoted as VDD. The maximum rating current

supplied by the regulated VDD is 1 Amp. When the VIN voltage is sourced from an

external source, an LED indicator near the middle of the Education Board will

illuminate.

The GND pin is, as the name suggests, the common ground of the system and is

common to all of the different power supply sources.

The X4 Connector has 4 Servo Headers, where you may plug in up to 4 standard

servos. The control signals are from Pins 8~11. The power to the servo may come

from either VDD or VIN by inserting a jumper at Header X5. To reduce the power

Chapter 4 Hardware Description

consumption of the 9V battery and to eliminate the need for frequent plugging-in and

plugging-out of the servo cables, you may set the Slide Switch from Position 2 to 1,

which will turn off the power supply to the servos.

The slide switch on the Education Board is used to control the external power

supply. When on Position 0, VDD/VIN/VCC are not available, when on Position 1,

the VDD/VIN/VCC are available on the female headers around the breadboard, but

the VDD or VIN on connector X4 is not available and when in Position 2, both the

VDD and VIN on connector X4 are available. When VDD and/or VCC is available,

their respective LED indicator will light. Note that the VCC power source may come

either from VIN, which will be regulated to 5V on the BASIC Commander® board or

directly come from USB power. If the USB cable is connected to the BASIC

Commander®, even the slide switch is in position 0, the VCC on Female Header is

still available.

The RESET push button is used to reset the BASIC Commander®, which will

restart the program execution.You can also find pin-headers labelled cmdBUS, where

you may connect up to four of Innovati® Peripheral Modules through the 6-wired

cmdBUS™ cables.The following table gives a summary of the connectors or switches

you may find on the Education Board.

Chapter 4 Hardware Description

3 2

Position

0
1
2

VDD/VIN/VCC
(on Female Headers)

Off
On
On

VIN or VDD
(on Connector X4)

Off
Off
On

3 3

The Education Board has two LEDs. The one by the BASIC Commander® socket

will light when the USB power bus is on and when the USB cable is connected. The

other one near the center of the Education Board will light when external power is

applied. This power may come from a 9 Volt Battery, power adapter or a power supply

from the white 2-pin connector.

Peripheral Modules

No longer is it necessary to select and purchase individual electronic peripheral

components and get involved in the time consuming task of circuit board construction

and complex interfacing. Innovati® has taken care of these technical related issues by

pre-building these peripheral modules and providing you with sophisticated control

commands for their operation. Let's take the LCD2X16A Peripheral Module shown in

the diagram as an example.

Chapter 4 Hardware Description

Connector
32-pin Socket
Power Jack

White 2-pin Connector
Battery Snap
Slide Switch
Push Button

X4
X5

cmdBUS

Function
For 24-/32-pin BASIC Commander?
For 6~12 VDC adapter, center positive
For 6~12 VDC, power supply
For 9V Battery
Power On/Off and Servo Power On/Off
Reset Button
Four Servo Connectors
Servo Power Selection
Four Module Connectors

Simply setup the DIP switch on the small add-on board, which is used to setup

the Module ID. The address can range from 0 to 31, and each peripheral module

should have its own unique address. Therefore no two modules should have the same

DIP switch ID address on the cmdBUS™. On each Peripheral Module, there is a

cmdBUSTM, and a 6-pin pin header labelled cmdBUS™. Connect the module through

the flat cable provided to the cmdBUSTM on the Education Board.

The VIN pin is the unregulated external power supply, rating 6~12 VDC, which

will also be regulated down to 5 VDC on each Peripheral Module for its internal

power requirements. Note that great care should be taken when using this cable as a

wrong cable insertion may seriously damage the devices which are connected to the

cmdBUS™. After the modules are declared in the program and if the module ID in the

program is the same as the hardware switch, it will then be ready for immediate use.

Of course, each module comes with its own instruction manual and software driver for

installation.

Chapter 4 Hardware Description

3 4

Figure 4-3 LCD2X16A Peripheral Module

VIN (RED)
GND (BLACK)
SDA
SCL
EVT
SYN

Figure 4-4 6-wired cmdBUS™ Cable

3 5

Handling Precautions

When handling the BASIC Commander®, it is important to take the proper anti-static

precautions. This of course applies to most other ICs which can be damaged by the

static charge built up in certain environments, such as those of low humidity or

between certain materials. The BASIC Commander® is supplied in anti-static

packaging, which should be used for transportation or storage. Also ensure that you

are working in a grounded area when developing your project, which will eliminate

the building up of any damaging stray charge. The best method is by using a grounded

mat and grounded straps such as seen in professional electronic assembly areas,

otherwise if this is not possible then ensuring that you are personally grounded

perhaps by touching some grounded object before handling the BASIC Commander®

would do much to protect from anti-static damage. When the BASIC Commander® is

connected to your PC via the USB cable or after it is inserted into your actual project's

hardware and is part of an overall working circuit, then anti-static issues should not be

a problem.

Chapter 4 Hardware Description

Chapter 4 Hardware Description

3 6

InnoBASIC™

Programming Language

Introduction

The innoBASIC™ is a high-level programming language for Innovati's BASIC

Commander® system. Although it is designed to be an easy-to-learn language, it is

also powerful enough to meet the requirements of experienced users. For those not

familiar with programming languages, this is the place to start learning from the

beginning. Firstly, we'll show you an example program to welcome you into the

innoBASIC™ world.

Statements

A program consists of statements, which give instructions to the compiler to generate

the final executable code accordingly. Statements may consist of constants, variables,

operators and functions to define constants, declare variables, perform arithmetic and

logical operations and execute program control transfer and declare subprograms.

55

3 7

Chapter 5 InnoBASIC Programming Language

Sub main()

Debug Hello World!

End Sub

Normally, each line contains one statement, which can either be a single or

compound statement. However, when statements are short and for reading

convenience, multiple statements can be placed in one physical line, however each

statement should be separated with its preceding statement by a colon : symbol. If

a statement is long to the extent that it may cause reading inconvenience, a single

underscore _ preceded with a white-space character is used for line continuation,

which allows you to span a logical line to multiple physical lines. Line continuations

are treated as if they were space. The following program shows these two statement

formats.

Note that line continuation is not applicable to comments and string literals.

Comments

An apostrophe is used to denote a comment, for example:

All characters to the right of the apostrophe are regarded as comments and as

such will be ignored by the compiler, unless the apostrophe is part of a string literal.

Note that comments cannot span to multiple lines by using line continuations, and no

block comment command is available.

3 8

Chapter 5 InnoBASIC Programming Language

Sub main()

Debug _

Hello World!

End Sub

Dim a As Short Here is the Comment!

3 9

Identifiers

An identifier is a name. InnoBASIC™ identifiers must start with a letter, and followed

with characters, digits or underscores. An identifier can be up to 31 characters long.

InnoBASIC™ is not case sensitive, therefore identifiers xyz, Xyz and XYZ are all

equivalent. Keywords cannot be used as an identifier.

Keywords

A keyword is a word that has special meaning in the innoBASIC™ language.

Keywords are reserved and may not be used as identifiers. Please refer to Appendix B

where all the keywords reserved in the innoBASIC™ language are listed.

Labels

Label declaration statements must appear at the beginning of a logical line and labels

should be a legal identifier and must always be followed by a colon. It marks the start

of statements the program execution may branch to from a GOTO statement.

Labels have their own declaration space and do not interfere with other

identifiers. The scope of a label is the body in which the label is declared

Constants, Variables and Data Types

A constant is a constant value, which never changes during program execution. It is

declared with the keyword CONST. For example;

CONST Constname As Type = value

Chapter 5 InnoBASIC Programming Language

The following examples demonstrate the usage.

The value given should be a literal appropriate for the given type. Constants are

implicitly accessible to all program space, so it must be declared as global. You may

declare a constant array, but the elements cannot be another const string or array.

In contrast to the constant is the variable, which conveys a value that may be

changed during program execution. All the variables are declared with the key word

DIM, for example;

DIM Variablename As Type [= value]

Before any variable is used in your program, the system must first be told that it

exists as well as what kind of variable it is and in some cases its size. The variables

can be initialized when it is declared. If not, Default 0 value or null string for the

variables are initialized. Conventionally, the variable primitive data types are Boolean,

Byte, Short, Word, Integer, DWord, Long and Float type which are assigned within

the RAM data memory. If DIM is used within any procedure, the variables declared

are local variables which mean they are visible only inside the variables which can be

seen only inside the procedure where they are declared. On the contrary, if DIM is

used outside of all procedures, the variables are global, which means they are visible

throughout the entire program.

Note that if the variables are declared as global, their initial value cannot be

assigned when declared, they must be given in the program. If they are declared as

local variables, they don't have such constraints.

4 0

Chapter 5 InnoBASIC Programming Language

4 1

Chapter 5 InnoBASIC Programming Language

Variable Type

BOOLEAN

BYTE

SHORT

WORD

INTEGER

DWORD

LONG

FLOAT

STRING

PERSISTENTBYTE

PERSISTENTSHORT

PERSISTENTWORD

PERSISTENTINTEGER

PERSISTENTDWORD

PERSISTENTLONG

PERSISTENTFLOAT

Size

1 Byte

or

1 Bit

1 Byte

1 Byte

2 Bytes

2 Bytes

4 Bytes

4 Bytes

4 Bytes

N Bytes

1 Byte

2 Bytes

4 Bytes

4 Bytes

Description

Variable commonly used as a status flag or Boolean result. When

declared as local variable, 1 Byte is used, when declared as global

variable, 1 Bit is used.

Unsigned variable for values 0~255.

Signed variable for values -128~+127.

Unsigned variable for values 0~65535.

Signed variable for values -32768~+32767.

Unsigned variable for values 0~4294967295.

Signed variable for values -2147483648~+2147483647.

Floating point variable for value -3.4E+38~+3.4E+38.

A sequence of zeros or more ASCII code characters enclosed by

the ASCII double-quote character at the beginning and end. The

size N of the string is assigned by the user and is limited by the

available RAM size. In a string, a double-quote character should

be expressed in 2 double-quote characters.

Variable stored in non-volatile EEPROM. Due to the limited

operations, the two data types are actually the same.

Variable stored in non-volatile EEPROM. Due to the limited

operations, the two data types are actually the same.

Variable stored in non-volatile EEPROM. Due to the limited

operations, the two data types are actually the same.

Floating point variable stored in non-volatile EEPROM for value

-3.4E+38 ~ +3.4E+38.

Type Conversions

The general rule for type conversion is to convert a narrower operand into a wider

one, promotion, without losing information, such as converting a Short into an Integer

or a Long type variable. If conversion is in the opposite direction, clipping, extra high

bytes will be dropped out. Cautions must be taken when this kind of type conversion

is utilized.

The subsequent subsections shows all the variable types that are supported in the

InnoBASIC™ programming language along with the size occupied and brief

introductions to them.

Literals

A literal is a textual representation of a particular value of a type. Literal types include

Boolean, integral number, floating point, character and string.

Boolean Literals
True and False are literals of the Boolean type that map to the true and false state.

They have the value 1 and 0, respectively.

Integral Literals
Integral literals can be decimal (10-based), hexadecimal (16-based), octal (8-based) or

binary (2-based). A decimal literal is a string of decimal digits (0-9) and no prefix is

needed. A hexadecimal literal is &H followed by a string of hexadecimal digits (0-9,

A-F). An octal literal is &O followed by a string of octal digits (0-7). Binary literal is

&B followed by a string of binary digits (0 or 1). Decimal literals directly represent

the decimal value of the integral literal, whereas octal and hexadecimal literals

represent the binary value of the integer literal.

Chapter 5 InnoBASIC Programming Language

4 2

Floating-Point Literals
A floating-point literal is an integer literal followed by an optional decimal point (the

ASCII period character) and mantissa, and an optional base 10 exponent. Due to the

limitation of memory and computational speed, a floating-point number is represented

only in 4 bytes. The valid number of digits is 5, therefore the floating-point operations

are sufficient for common practices, but not recommended for high precision

calculations.

String Literals
A string literal is a sequence of zeros or more ASCII code characters beginning and

ending with an ASCII double-quote character. Within a string, a sequence of two

double-quote characters is an escape sequence representing a double quote in the

string. In consideration of the limited RAM resources, a proper string size should be

given when declared.

Character Literals
There is no specialized data format for a character. It is represented by a single ASCII

code character. To distinguish a character literal and a single-character string, a letter c

postfix, which means a character, is required.

Array

An array contains variables of the same type with the exception of bit (Boolean),

string types or another array. Each of them is accessed through indices, and is called

the elements of the array. If an array has more than one index, say two indices, it is

called a two-dimensional array. Note that when declaring, the number(s) in the

4 3

Chapter 5 InnoBASIC Programming Language

myChar = H c stands for a single character H

myString = H stands for a string with one character H

parenthesis denotes the maximum index number, instead of the number of elements.

The index starts from 0. The array can be initialized when declared as shown in the

following example.

The following example shows how to use an array to make a 9 by 9 multiplication

table.

The Terminal Window will show a multiplication table. Note that the size of a single

array, no matter its dimensions, is limited to 100 elements.

4 4

Chapter 5 InnoBASIC Programming Language

Sub main()

Dim m(8,8) As BYTE

Dim I As BYTE

Dim J As BYTE

For I=0 to 8

For J=0 to 8

m(I,J)=(I+1)*(J+1)

Debug m(I,J),

Next J

Debug CR

Next I

End Sub

4 5

Operators

There are two kinds of operators. Unary operators take one operand and use a prefix

notation. Binary operators take two operands and use an infix notation. Note that for

unary operators, they are right-associative whereas the binary operators are all left-

associative, which means that operations are performed from left to right. When an

expression contains multiple operators, the precedence of the operators controls the

order in which the operators are evaluated. Nevertheless, precedence and associativity

can be altered by using parentheses.

The following table lists the binary operators in descending order of precedence

The different types of operators are introduced in the subsequent sections.

Chapter 5 InnoBASIC Programming Language

Category

Unary plus and minus

Multiplication and division

Add and Subtract

Shift

Relational

Bitwise AND, OR, XOR and Complement

Logical NOT, AND and OR

Operators

+, -

*, /,\ , MOD

+,-

<<, >>

=, <>, <, >, <=, >=

AND, OR, XOR , ~

NOT, AND, OR

Arithmetic Operators
There are eight arithmetic operators,

+ addition

- subtraction

* multiplication

/ division (the floating-point division)

\ division (the integral division)

MOD modulus (the remainder of integral division)

<< shift left (analogue to multiplication of 2's)

>> shift right (analogue to division of 2's)

Relational Operators
The relational operators compare two values and return a TRUE (1) or FALSE (0)

result according to the relational comparison.

> greater than

>= greater than or equal to

< less than

<= less than or equal to

= equal to

< > not equal to

Bitwise Operators
There are four operators for manipulating bit-operations, namely, AND, OR, XOR

and ~ (complement). The unary ~ yields the 1's complement of a value by converting

every bit. The AND, OR and XOR operators execute a bitwise operation of two

operands:

Chapter 5 InnoBASIC Programming Language

4 6

4 7

Logical Operators
The logical operators support the logical operations AND, OR and NOT. They create

a TRUE or FALSE value. Expressions connected by AND and OR are evaluated from

left to right. The evaluation stops as soon as the result is known. The numeric value of

a relational or logical expression is 1 if the relation is true, and 0 otherwise. The unary

negation operator NOT converts a non-zero operand into 0 and a zero operand into 1.

Assignment Operators
There are 6 assignment operators for expression statements. For simple assignment,

the equal sign is used with the value of the expression replacing the variable, in the

left operand. The remaining 5 are compound assignment operators. Taking A += B for

example, it is equal to the expression A = A + B, and so on.

=

+ =

- =

* =

/ =

\ =

Program Control Flow

Program statements are executed in the order that they appear in the program source

file. Changing this natural execution sequence, can be achieved by conditional

statements, unconditional statements and subprogram invocations. The conditional

statements allow conditional execution of statements based on expressions evaluated

at run time. There are four kinds of statements in this category, IF...THEN...ELSE

Statements, SELECT...CASE Statements, DO...LOOP and FOR...NEXT statements.

The unconditional statements are the GOTO and invocation statements.

Chapter 5 InnoBASIC Programming Language

Conditional Statements

IF...THEN...ELSE Statements
The IF...THEN...ELSE statement is one of the most basic flow control statements. It

evaluates an expression which must be implicitly convertible to Boolean. If the

expression in the IF statement is True, the statements enclosed by the IF block are

executed. If the expression is False, then the statements in the ELSE block are

executed. More conditions can be evaluated by using the ELSEIF statement, when

each of the ELSEIF expressions is evaluated. If one of the ELSEIF expressions

evaluates to True, the corresponding block is executed. Once a block has been

executed, the execution passes to the end of the IF...THEN...ELSE statement.

Chapter 5 InnoBASIC Programming Language

4 8

Start

End End

IF condition?

THEN statements THEN statements ELSE statements

No

Start

IF condition?
NoYes

Yes

IF...THEN STATEMENTS IF...THEN...ELSE STATEMENTS

Figure 5-1 IF...THEN...ELSE Statements Flow Diagram

IF...THEN...ELSE Statements has a single statement in the IF block and a single

statement in the optional ELSE statement, then the line version of the IF statement is

applicable. For example:

SELECT...CASE Statements
The SELECT...CASE command is an advanced compound decision-making structure

of IF...THEN...ELSE structures, which have the same comparison expression, to

execute one of several possible actions. When a Select command is executed, the

value is compared with the Case constant in the textual declaration order. If the first

Case const meets the evaluated value then its block will be executed. If no Case const

meets the evaluated value and the optional Case Else statement exists, that Case Else

block will be executed. Once a block has finished executing, execution passes to the

end of the SELECT...CASE command.

4 9

Chapter 5 InnoBASIC Programming Language

Sub main()

Dim a,b,Max As Integer

Debugin Enter the First Number: , a

Debugin Enter the Second Number: , b

If a < b Then

Max = b

Else

Max = a

End If

Debug Max is: , Max

End Sub

Sub main()

Dim x As Byte

Do

Debugin"Enter a 1 to 7 to find the nth day of a week. , x, CR

Select Case x

Case 1

Debug It's Sunday. , CR

Case 2

Debug It's Monday. , CR

Note that the optional CASE can come with SELECT in the conventional style. The

following example illustrates this behaviour:

5 0

Chapter 5 InnoBASIC Programming Language

End

Start

SELECT
CASE 1 ~ N?

statements
CASE N

statements
CASE 2

statements
CASE 1

statements
CASE ELSE

No

Yes

Figure 5-2 SELECT...CASE Statements Flow Diagram

5 1

DO...LOOP Statements
During programming, if it is required to execute a program block repeatedly, then one

of the most efficient ways of doing so is to use the DO...LOOP command.

DO [{WHILE | UNTIL} condition]

[statements]

[EXIT DO]

[statements]

LOOP [{WHILE | UNTIL} condition]

The basic DO...LOOP command will constitute an infinite loop, with the

commands enclosed by DO and LOOP to be executed forever. You may add the

WHILE qualifier at the beginning or the end of the loop, but not after both, whereas

the Boolean condition will be tested on each iteration. As long as the condition is true,

Chapter 5 InnoBASIC Programming Language

Case 3

Debug It's Tuesday. , CR

Case 4

Debug It's Wednesday. , CR

Case 5

Debug It's Thursday. , CR

Case 6

Debug It's Friday. , CR

Case 7

Debug It's Saturday. , CR

Case Else

Debug Wrong Number! , CR

End Select

Loop

End Sub

the loop statement block will be executed. If the WHILE is placed at the end of the

loop, the loop statement block will be executed at least once, then the Boolean

condition will be tested. The UNTIL qualifier is similar to the WHILE qualifier,

except that the loop is terminated rather than continuing when the Boolean condition

is true. The EXIT DO command may be placed in the loop body which exits the

current loop immediately before the loop limit test is executed.

Chapter 5 InnoBASIC Programming Language

5 2

Start

End

Condition?

Statement
Block

Yes

No

Start

End

Condition?

Statement
Block

Yes

No

DO...LOOP WHILE DO WHILE...LOOP

Figure 5-3a DO...LOOP Statements Flow Diagram

5 3

The following example demonstrates this behaviour:

Chapter 5 InnoBASIC Programming Language

DO...LOOP UNTIL DO UNTIL...LOOP

Start

End

Condition?

Statement
Block

No

Yes

Start

End

Condition?

Statement
Block

No

Yes

Figure 5-3b DO...LOOP Statements Flow Diagram

Sub main()

Dim x As Short

x = 1

Do While x<5

Debug *

x+=1 display 4 asterisks

Loop

Debug CR

FOR...NEXT Statements
You can use a FOR...NEXT statement to execute a block of codes, when you know

how many repetitions you want. You can use a loop control variable that increases or

decreases with each repetition of the loop.

A For statement specifies a loop control variable, a start value, an end value, and

an optional step value. At the beginning of the loop, the lower bound value is assigned

to the control variable. The statements enclosed by FOR...NEXT are executed, and

then the program returns to the beginning of the loop while the loop control variable

increases or decreases with the value in the STEP clause. If the step value is omitted,

it is implicitly the literal 1. The control variable is now checked with the end value, if

5 4

Chapter 5 InnoBASIC Programming Language

x = 1

Do

Debug *

x+=1 display 4 asterisks

Loop While x<5

Debug CR

x = 5

Do Until x=0

Debug *

x-=1 display 5 asterisks

Loop

Debug CR

x = 5

Do

Debug *

x-=1 display 5 asterisks

Loop Until x=0

End Sub

5 5

it is past the end value, the loop will be terminated and the program branches to the

statement after the NEXT statement. If you want the loop control variable to increase,

then the STEP value must be a positive value and the end value should be no less than

the start value. Contrarily, if you want the loop control variable to decrease, then the

STEP value must be a negative value and the end value should be no greater than the

start value. If the values are not consistent in direction, the loop will not be executed.

The following diagram shows the FOR...NEXT operation.

Chapter 5 InnoBASIC Programming Language

Start

End

Statement

Index = Index + Step Value

Index = Initial Value

Yes

No

Index Past
End Value?

Figure 5-4 FOR...NEXT Statements Flow Diagram

When you use a loop control variable, be careful of its value domain, for

example, for a SHORT type variable, its value domain is from -128 to +127, while for

a BYTE type variable, its value domain is from 0 to 255. In addition, if the value

overflows or underflows due to the STEP value increment or decrement, the value is

no longer what you would expect.

The loop control variable is specified in advance. The loop control variable of a

For statement must be of a primitive numeric type (Byte, Short, Word, Integer,

DWord, Long).

A loop control variable cannot be used by another enclosing FOR...NEXT

statement. A FOR statement must be closed by a matching NEXT statement. A NEXT

statement always matches the innermost open FOR statement. Usually you may omit

the loop control variable, except for program reading clarity. However, if you add a

loop control variable which does not match the innermost open FOR statement, a

compile-time error results.

You can exit a FOR...NEXT statement with the EXIT FOR keyword, but it is not

recommended to branch into a FOR LOOP from outside the loop, which may result in

loop control errors.

5 6

Chapter 5 InnoBASIC Programming Language

Sub main()

Dim Index As Byte

Dim Sum As Byte

Sum=0

For Index = 1 To 10 Step 1

Sum+=Index

Next

Debug 1+2+...+10= ,sum

End Sub

5 7

GOTO Statements
The GOTO command will force the program to jump to a user specified location. This

location is given by the label name, which follows the GOTO command. The

statement following the GOTO command will not be executed. The next command

after the GOTO command to be executed will be the one at the label as specified. The

GOTO command is therefore used to give the user a direct means of program control.

Invocation Statements
An invocation statement invokes a SUB or FUNCTION preceded by the optional

keyword CALL. The program execution is passed to the SUB or FUNCTION

procedure and the program execution is returned to the statement following the

invocation statement. The incidence of an EVENT procedure can be deemed as an

invocation like SUB and FUNCTION except when it is invoked automatically if a

certain event occurs. Please refer to the following SUB, FUNCTION and EVENT

paragraphs for details.

SUB and FUNCTION

A program is made up of at least one Sub procedure with the name "main". The "Sub

Main()" statement denotes the procedure where the program starts and the program

terminates when it passes to the end of the Main() procedure. Besides the Main()

procedure, you may add more Sub procedures, Functions, which makes your program

more structured and more code efficient.

The SUB and FUNCTION subprograms may contain arguments, but only the

FUNCTION subprograms return values. Usually, the repeatedly used program

paragraphs are written in an independent SUB subprogram, which help reduce

program space and increase program readability. Meanwhile, the FUNCTION

subprogram executes a calculation, in which the result of the calculation is meant to

be returned to the program where it was invoked.

Chapter 5 InnoBASIC Programming Language

Sub Procedures
Sub procedures are methods which do not return a value. Each time when the Sub

procedure is called, the statements within it are executed until the matching End Sub

is encountered. Sub Main(), the starting point of the program itself, is a sub procedure.

When the application starts execution, control is automatically transferred to the Main

Sub procedure, which is called by default.

Functions
Function is a method which returns a value. Functions are used to evaluate data, make

calculations or to transform data. Declaring a Function is similar to declaring a Sub

procedure. Functions are declared with the Function keyword. The following code is

an example of how to use Functions:

5 8

Chapter 5 InnoBASIC Programming Language

Sub main()

Display()

End Sub

Sub Display()

Debug Sub Procedure Display() has executed.

End Sub

Function Max(I As Integer, J As Integer) As Integer

If I>J Then Return I Else Return J

End Function

Sub main()

Dim X, Y, Z As Integer

Do

Debugin Enter the First Number: , X

Debug X, CR

Parameters
A parameter is an argument that is passed to the SUB or FUNCTION procedure.

Parameters are enclosed in parentheses after the method name in the method

declaration. You must specify the types for these parameters. Note that String and an

Array cannot be used as parameters to Sub or Function.

Only the procedure Function may pass parameters when invoked and there are two

ways to pass them, ByRef and ByVal. If not explicitly expressed, the ByVal is set as

default.

A reference parameter is a parameter declared with a ByRef modifier. A

reference parameter does not create a new storage location. Instead, a reference

parameter represents the variable given as the argument in the invocation.

Modifications of a reference parameter directly and immediately impact the

corresponding argument. The following example Swap shows how the two reference

parameters work:

5 9

Chapter 5 InnoBASIC Programming Language

Debugin Enter the Second Number: , Y

Debug Y, CR

Z = Max(X,Y)

Debug The Maximum value is , Z, CR

Loop

End Sub

Sub Swap(ByRef a As Integer, ByRef b As Integer)

Dim t As Integer = a

a = b

b = t

End Sub

Sub main()

Dim x As Integer = 1

Dim y As Integer = 2

The program output is:

Before: x = 1, y = 2

After: x = 2, y = 1

Peripheral Module Programming Features

Peripheral Modules are one of the very special features of the Innovati® system. To

employ the Peripheral Modules features, several points associated with software

programming should be understood. Here is the section where the exclusive usages

are introduced.

Declaration of Peripheral Modules
Each type of Peripheral Module has its product name, which is released with the

products by Innovati®, Inc. For instance, the 2x16 LCD Module has the LCD2X16A

product name. Users can declare a module name as the LCD2X16A type, along with

the ID address that appears on the module in question. The ID should be unique

ranging from 0 to 31 for each Peripheral Module. Note that this statement should be

written outside of any SUB, FUNCTION and EVENT procedure, which makes it a

global declaration.

Chapter 5 InnoBASIC Programming Language

6 0

Debug Before: x = , x, , y = , y, CR

Swap(x, y)

Debug After: x = , x, , y = , y, CR

End Sub

Invocation of Peripheral Module Commands
As the featured function commands differ from module to module, it is therefore

necessary to refer to their relevant documentation for instructions on their use. The

command is invoked with a simple suffix of the declared name with a dot in between.

EVENT Procedures
This is used to manage real world events whose occurrences are not predictable and

also to reduce the inefficient polling which would take up valuable computing

resource. To handle such situations, an EVENT feature is provided, which removes

the need for users to take care of the events by frequent polling of the Peripheral

Modules. To implement this just write down the event handling procedure, which is

enclosed in the EVENT and END EVENT statements, and enable the EVENT ability

in the main program. After this the programming effort can be used with other more

important tasks, however, when the event that you have enabled occurs, your program

will then branch automatically to the event procedure.

Declaration of Peripheral Modules EVENT
An event declaration consists of a module name and a valid event name for the

module. It is a little different from the convention for SUB and FUNCTION. The

Event name consists of two parts conjugated with a dot. The first part is the name of

the user-defined module. The second part is the name of the EVENT that is supported

by the Module. Users should check the relevant document for the event available.

Note that the EVENT procedure has the highest priority when the program is

executing. Therefore, when the EVENT procedure is being executed, no other tasks

can be executed, a situation that will remain in place until the EVENT procedure has

6 1

Chapter 5 InnoBASIC Programming Language

Peripheral myLCD As LCD2X16A @ 0

Sub Main()

myLCD.Display(Hi there!)

End Sub

ended. For this reason, not to remain in the EVENT procedure is a good habit to

cultivate in program management. For the EVENT procedure, parameter passing and

value returning are not permitted which can be seen from the SUB and/or

FUNCTION.

Sample Project Using the Peripheral Modules

Illustrated here is a simple program, which makes use of the Peripheral Modules. With

just a few lines of program and in a very short space of time, you can be up and

running for both hardware and software. Working on this example by yourself, you

will quickly see the power of the overall system and hopefully be impressed by its

capabilities and efficiency.

6 2

Chapter 5 InnoBASIC Programming Language

Event MyKeypad.KeypressedEvent()

Dim KeyID as Byte

MyKeypad.GetKey(KeyID) To get the Key ID

Debug Key", KeyID, is Pressed! , CR To display

End Event

Figure 5-5 Using the LCD2X16A and KEYPADA Peripheral Modules

6 3

Additional modules as well as discrete components can be added to the

breadboard to develop your own project in your own unique way. The possibilities

here are only limited by your own creativity and imagination.

Chapter 5 InnoBASIC Programming Language

Peripheral myLCD As LCD2X16A @ 0 'set ID switch to 00000 (binary)

Peripheral myKeypad As KEYPADA @ 1 'set ID switch to 00001 (binary)

Sub main()

Dim KeyID As Byte

Dim Status As Byte

Do

Status = myKeypad.GetKeyID(KeyID) 'read key

If Status>0 Then myLCD.Display(KeyID) 'if not pressed, 0 is read

Loop

End Sub

Chapter 5 InnoBASIC Programming Language

6 4

66Command Set

Introduction

In this section you can find the reference material giving full technical details on the

innoBASIC™ programming language. The individual commands can be located by

using their alphabetical listings.

Types of Commands

Basically there are two kinds of commands that you can write in your program,

known as conventional BASIC language commands and the featured system

commands. For the conventional BASIC language commands section, our unique

featured commands are added which integrates the peripheral hardware modules

perfectly seamlessly into the conventional BASIC language. For the system

commands section, the featured commands are provided and because they are not

common to the conventional BASIC language, they differ from one BASIC language

to another. In consideration of experienced users, featured commands from other

popular BASIC languages are supported, however minor changes may have been

made due to different system considerations. Unless otherwise mentioned, these two

types of commands are not distinguished intentionally for simplicity.

Chapter 6 Command Set

6 5

Programming Command Conventions

The software commands described in the following section are written in a certain

way for which careful attention must be given. The software commands will naturally

always contain an essential word describing the basic function. However, following

on from this essential word may be other words, which may be essential or optional.

By examining the way in which the commands are described in the reference manual

their usage can be understood.

Essential words in the command will be written with CAPITAL letters in bold

type and italics in bold type. The CAPITAL bold type word must be written exactly as

shown, not case-sensitive, whereas the italic bold type words must be replaced with

the user values. Non-essential words in the command, or words that the user can

decide to add or omit, will be enclosed in curly brackets { }. Only what is contained in

the brackets need be written, the actual bracket symbols must not be written. Other

square brackets [] and parentheses () must be typed in the position of the given

syntax. Additionally, a final word must be said about the symbol which

represents mutually exclusive elements.

The above conventions of course only apply to the style of writing in the

reference manual, since in the actual program, which is a simple ASCII text file, it is

not required to write with formatted capitals, bold or italic letters.

Categories

All the commands available in InnoBASIC™ language can be categorized into three

kinds. Firstly, the preprocessor directives, which give instructions on how to compile

the source programs. The preprocessor directives begin with the # symbol. Secondly,

the fundamental commands, which constitute the scheme of every program, including

Chapter 6 Command Set

6 6

6 7

declaration, flow control, decision making etc. Thirdly, the I/O commands, which use

the BASIC Commander® on board I/O pins for various functions, including basic I/O

operation, counter, pulse measurement, communications and other featured

commands. Lastly are some mathematical and conversion operation commands. The

following table shows the various commands in their respective categories.

Chapter 6 Command Set

Fundamental Commands

CALL

DIM

DO...LOOP

ENUM...END ENUM

EVENT...END EVENT

FOR...NEXT

FUNCTION...END FUNCTION

GOTO

IF...THEN...ELSE

PERIPHERAL

RETURN

SELECT...CASE

SUB...END SUB

Preprocessor Directives

DEFINE

ELSE

ELSEIF

ENDIF

IFDEF

IFNDEF

6 8

Chapter 6 Command Set

I/O Commands

BUTTON

CHECKMODULE

COUNT

DEBUG

DEBUGFILE

DEBUGIN

DEBUGINFILE

FREQOUT

GETDIRPORT

HIGH

I2CIN

I2COUT

IN

INPUT

KEYIN

KEYSCAN

LCDCMD

LCDIN

LCDOUT

LOW

OUTPUT

PAUSE

PULSEIN

PULESOUT

PWM

RANDOM

RCTIME

READPORT

RESETMODULE

REVERSE

SERIN

SEROUT

SETDIRPORT

TOGGLE

WRITEPORT

6 9

Chapter 6 Command Set

ABS

ACOS

ASIN

ATAN

ATAN2

BYTE2FLOAT

CEIL

COS

DWORD2FLOAT

EXP

EXP10

FLOAT2BYTE

FLOAT2DWORD

FLOAT2INTEGER

FLOAT2LONG

FLOAT2REALSTRING

FLOAT2SHORT

FLOAT2STRING

FLOAT2WORD

FLOOR

INTEGER2FLOAT

LCASE

LEFT

LEN

LOG

LOG10

LONG2FLOAT

MID

RIGHT

SGN

SHORT2FLOAT

SIN

SQRT

STRING2FLOAT

STRREVERSE

UCASE

WORD2FLOAT

Mathematical and Conversion Commands

7 0

Chapter 6 Command Set

Command Summary

The following lists all of the software commands in alphabetical order, showing all

the details behind each command. This section should form the main programming

reference for your application program and the place to consult for issues regarding

programming commands.

Chapter 6 Command Set

7 1

Preprocessor Directives

Syntax
#DEFINE Identifier Replacement

The #DEFINE directive defines the Identifier with Replacement, which instructs the

compiler to replace the successive occurrences of Identifiier with Replacement.

Syntax
#DEFINE Identifier

If there is no Replacement in the statement, then #DEFINE directive is used to define

the Identifier as true, which can be evaluated later for conditiional directives.

Syntax
#IFDEF Identifier

Statements

#ENDIF

If the Identifier has been defined, then the Statements will be included in the

program, otherwise the Statements will be ignored.

Syntax
#IFNDEF Identifier

Statements

#ENDIF

#DEFINE MARY_AGE 20

Sub main()

debug "Mary is",MARY_AGE,"years old."CR 'Show age as 20

End Sub

Chapter 6 Command Set

7 2

If the Identifier has not been defined in advance, then the Statements will be

included in the program, otherwise the Statements will be ignored. All the statements

below with #IFDEF can be replaced with #IFNDEF for the opposite logic.

Syntax
#IFDEF Identifier

Statements1

#ELSE

Statements2

#ENDIF

If the Identifier has been defined, then the Statements1 will be included in the

program, otherwise the Statements2 will be included instead.

Syntax
#IFDEF Identifier1

Statements1

#ELSEIF Identifier2

Statements2

#ELSE

Statements3

#ENDIF

If the Identifier1 has been defined, then the Statements1 will be included in the

program, otherwise if the Identifier2 has been defined, then if the Statements2 will be

included. If both Identifier1 and Identifier2 haven't been defined, then the

Statements3 will be included instead.

7 3

Chapter 6 Command Set

#DEFINE DEBUG_MSG

Sub main()

#IFDEF DEBUG_MSG

Debug "DEBUG_MSG is defined"

#ELSE

Debug "DEBUG_MSG is not defined"

#ENDIF

End Sub

Example

7 4

Chapter 6 Command Set

Sub main()

Dim Result As Float

Result = ABS(2.0)

Debug ABS(2.0)= , Result, CR

Result = ABS(-2.0)

Debug ABS(-2.0)= , Result, CR

End Sub

ABS

Syntax
Result = ABS(Argument)

Operation
To return the absolute value of a floating-point value.

Argument the floating-point operand of the ABS function.

Result a floating-point variable that receives the result of the ABS function.

Description
The ABS command returns the absolute value of a floating-point value. The result of

the ABS is a non-negative value.

Example

7 5

Chapter 6 Command Set

Sub main()

Dim Result As Float

Result = ACOS(0.5) the Result is 1.0472

Debug ACOS(0.5) = , Result, in radians. , CR

End Sub

ACOS

Syntax
Result = ACOS(Argument)

Operation
To execute a mathematical inverse cosine function.

Argument the floating-point operand of the inverse sine function with a range

from -1 to 1

Result a floating-point variable to receive the result of the inverse cosine

function. The result ranges from to 0 radians.

Description
The ACOS function returns the inverse cosine (arccosine) value of a floating-point

argument ranging from -1 to 1. The result is in units of radians ranging from to 0.

If converting to degrees, note that 360 degrees is equal to 2 radians.

Example

ASIN

Syntax
Result = ASIN(Argument)

Operation
To execute a mathematical inverse sine function.

Argument the floating-point operand of the inverse sine function with a range

from -1 to 1

Result a floating-point variable to receive the result of the inverse sine

function. The result ranges from - /2 to + /2 radians.

Description
The ASIN function returns the inverse sine (arcsine) value of a floating-point

argument ranging from -1 to 1. The result is in units of radians ranging from - /2 to

+ /2. If converting to degrees, note that 360 degrees is equal to 2 radians.

Example

7 6

Chapter 5 InnoBASIC Programming Language

Sub main()

Dim Result As Float

Result = ASIN(0.5) the Result is 0.52360

Debug ASIN(0.5) = , Result, in radians. , CR

End Sub

7 7

Chapter 6 Command Set

Sub main()

Dim Result As Float

Result = ATAN(0.5) the Result is 0.46365

Debug ATAN(0.5) = , Result, in radians. , CR

End Sub

ATAN

Syntax
Result = ATAN(Argument)

Operation
To execute a mathematical inverse tangent function.

Argument the floating-point operand of the inverse tangent function with a

range from -infinity to +infinity

Result a floating-point variable to receive the result of the inverse tangent

function. The result ranges from - /2 to + /2 radians.

Description
The ATAN function returns the inverse tangent (arctangent) value of a floating-point

argument ranging from negative infinity to positive infinity. The result is in units of

radians ranging from - /2 to + /2. If converting to degrees, note that 360 degrees is

equal to 2 radians.

Example

ATAN2

Syntax
Result = ATAN2(ArgumentY, ArgumentX)

Operation
To execute a mathematical inverse tangent function.

ArgumentY the first floating-point operand of the inverse tangent function

which represents the Y coordinate with a range from -infinity to +infinity

ArgumentX the second floating-point operand of the inverse tangent function

which represents the X coordinate with a range from -infinity to +infinity

Result a floating-point variable to receive the result of the inverse tangent

function. The result ranges from - to + radians.

Description
The ATAN2 function returns the inverse tangent (arctangent) value of a pair of

floating-point arguments which represents the Y and X coordinates respectively,

ranging from negative infinity to positive infinity. The result is in units of radians

ranging from - to + . If converting to degrees, note that 360 degrees is equal to 2

radians.

Example

Chapter 6 Command Set

7 8

Sub main()

Dim Result As Float

Result = ATAN2(1,2) the Result is 0.46365

Debug ATAN2(1,2) = , Result, in radians. , CR

End Sub

7 9

Chapter 6 Command Set

BUTTON

Syntax
BUTTON Pin, Onstate, Delay, Rate, LoopCounter, TargetState, Address

Operation
Maintains control over external buttons, and provides options regarding branching and

delays.

Pin a constant or variable (0~23) that specifies the pin number to which the

external pushbutton is connected. For the 24-pin BASIC Commander®, the Pin

value ranges from 0~15.

Onstate a constant or variable (0 or 1) that specifies the logical value of the

input when the button is pressed. If the input to which the button is connected is

normally high and the button pulls it low, the value here should be set to 0. For

inputs normally held low and pulled high by the button, the value should be set

to 1.

Delay a constant or variable (0~255) that specifies a time delay until which

the button auto-repeat function will be activated. The delay is measured in cycles

of the BUTTON routine. If the value here is specified as 0 then no delay or auto-

repeat function will be provided. If a value of 255 is specified then a debounce

will be provided but no auto- repeat will be provided. This parameter can be used

to eliminate the effects of button bounce.

Rate a constant or variable (0~255) that specifies the number of BUTTON

command iterations that will occur between every two auto-repeat operations.

LoopCounter a byte variable used by the BUTTON command as a loop

counter among iterations. Its value should be cleared to 0 before being used by

the BUTTON command for the first time and should not be altered by the user

thereafter.

TargetState a constant or variable (0 or 1) that specifies the state of the pin,

upon which a branch will occur. If the value is 0, then a branch will occur if the

button in not pressed. If the value is 1, then a branch will occur if the button is

pressed.

Address a label that specifies where to branch if the button conforms to the

target state.

Description
External buttons are a common feature of most projects and it is this command which

provides control over how the button is setup and what should happen when any

externally connected buttons are pressed.

Buttons are mechanical devices and when the button is first pressed the internal

contacts will bounce back and forth for a few milliseconds before a final and reliable

contact is made. During this debounce time, both low and high signals will be

detected, which could mean missing valid button presses. To prevent this, usually a

small delay of around 20 ms is normally added before the button value is actually

read. In the BUTTON command this is achieved using the delay parameter, which

after detecting the first button press signal will wait for a specified period, which

should be greater than the button bounce period, before looking for other button

signals. This time period is specified by the delay parameter which will count down

from the specified value each time a BUTTON command is executed. If the button

remains in the active state and when the delay counts down to zero, another branch

action will take place. At this time the rate counter will start to count down and when

zero another branch action will be executed. In this way repeat key functions can be

implemented, similar to the way in which a standard computer keyboard operates for

repeat key functions. The diagram shows the bouncing action of a mechanical switch

when switching from high to low.

Chapter 6 Command Set

8 0

8 1

Chapter 6 Command Set

Vdd

10 K

Vss Vss

Vdd
Onstate=1

for high active

niP O/IniP O/I

PB Switch
10 K

220
I/O Pin

220

PB Switch

Onstate=0
for low active

Figure 6-1 Mechanical Switch Bouncing Action from High to Low

Figure 6-2 Circuitry of Active Low and Active High Buttons

Input buttons can be connected so as to bring the input pin to a low condition or to a

high condition when pressed. The following two diagrams show both ways of doing

this.

Example
Connect an active-low push button circuit to pin P0 of the BASIC Commander®. This

demo program will display an asterisk "*" on the Terminal Window when you press

the button for the first time, then delays for about two seconds before auto-repeat

starts. The auto-repeat function continuously sends key pressing signal at a rate of

approximately 200 ms (20 x 10 ms PAUSE).

As an exercise try to change the Delay value to different values to see the effect

in different modes.

With "0" indicating no delay time, the auto-repeat function starts immediately;

the value range "1" to "254" is for various delays before the auto-repeat starts; the

value "255" indicates a no auto-repeat function, which is only one action for each

button press.

8 2

Chapter 6 Command Set

Sub main()

Dim PIN As Byte

Dim LoopCounter As Byte=0 cleared before BUTTON

command is used

Start:

Pause 10

BUTTON 0, 0, 200, 20, LoopCounter, 1, Display

Goto Start

Display:

Debug *

Goto Start

End Sub

8 3

Chapter 6 Command Set

Sub main()

Dim MyByte As Byte

Dim MyFloat As Float

MyByte = 0

MyFloat = BYTE2FLOAT(MyByte)

MyByte = 255

MyFloat = BYTE2FLOAT(MyByte)

Debug MyFloat = , MyFloat, CR

End Sub

BYTE2FLOAT

Syntax
Result = BYTE2FLOAT(Argument)

Operation
To convert a Byte value into its floating-point format.

Argument the Byte operand of the BYTE2FLOAT function.

Result a floating-point variable that receives the result of the BYTE2FLOAT

function.

Description
The BYTE2FLOAT command converts a Byte value into its floating-point format.

The floating-point result will be an integral value ranging from 0.0 to 255.0.

Example

CALL

Syntax
{CALL} Name({Arglist})

Operation
To invoke a procedure with an optional argument list.

Name the name of the procedure contains a sequence of letters, digits and

underscore. The leading character must be a letter.

Arglist a list of the arguments required in the procedure. The argument is

preceded with either a byval or byref modifier for argument passing. If no

argument is required, the parenthesis can be omitted.

Description
The keyword CALL is optional. When this command is executed the program will

branch to the procedure specified by Name. The program will later return to the

statement following the invocation statement when it encounters an END SUB or

RETURN command in the Procedure in question.

Example

Chapter 6 Command Set

8 4

Sub SayHello()

Debug Hello! , CR

End Sub

Sub main()

Call SayHello()

End Sub

8 5

Chapter 6 Command Set

Sub main()

Dim Result As Float

Result = CEIL(2.3) the result is 3.0

Debug CEIL of 2.3 is , result,CR

Result = CEIL(-2.3) the result is -2.0

Debug CEIL of -2.3 is , result,CR

End Sub

CEIL

Syntax
Result = CEIL(Argument)

Operation
To return the nearest integer that is not smaller than the floating-point argument value.

Argument the floating-point operand of the CEIL function.

Result a floating-point variable to receive the result of the CEIL function.

Description
The CEIL command returns the nearest integer (floating-point value) that is not

smaller than the floating-point argument value. Usually this is used to round a

floating-point value into an integer. Another pairing function is the FLOOR function,

which returns the nearest integer (floating-point value) that is not greater than the

floating-point argument value.

Example

CHECKMODULE

Syntax
Status = CHECKMODULE()

Operation
To check the Peripheral Module through the cmdBUS™ status

Status a variable to receive the status. If the Peripheral Module

communication is normal, 0 is returned. If the Peripheral Module does not

respond within the required period of time, Value 1 is returned. If the cmdBUS™

fails to execute its protocol, Value 2 is returned.

Description
If peripheral Modules are used in the application to enhance system operation

reliability, users may use this command to monitor the Peripheral Modules as well as

the cmdBUS™ status for malfunctions. This might be due to unpredictable

interference from the environment, either electrically or electromagnetically.

If the Peripheral Module communication is normal, a value of 0 is returned. If the

Peripheral Module does not respond within the required period of time, a value of 1 is

returned. This usually points to the fact that the Peripheral Module in question has

failed to operate normally. If the cmdBUS™ fails to execute its protocol, a value of 2

is returned. This is a serious system malfunction on the cmdBUS™, which blocks out

the communication scheme of all Peripheral Modules. The reason may be caused by

any one of the Peripheral Modules connected to the cmdBUS™ or even by the BASIC

Commander® itself. Note that the status checking command always returns the latest

status of access to the Peripheral Module, so it should be located immediately after a

Peripheral Command. Once a system malfunction is detected, you should take the

necessary steps to handle the malfunction, as no built-in recovery methods are

available.

8 6

Chapter 6 Command Set

8 7

Chapter 6 Command Set

Peripheral myLCD As LCD2X16A @ 0

Sub main()

Dim Status As Byte

myLCD.Display(Hi)

Status = checkmodule()

If Status = 1 Then

Debug Module Timeout! ,CR

Elseif Status = 2 Then

Debug cmdBUS Error! ,CR

Else

Debug Command executed successfully!

End If

End Sub

Example

COS

Syntax
Result = COS(Argument)

Operation
To execute a mathematical cosine function.

Argument the floating-point operand of the cosine function with a range from

0 to 2

Result a floating-point variable to receive the result of the cosine function.

Description
The COS function returns the cosine value of a floating-point argument ranging from

0 to 2 . If the argument is out of the range, it is recommended to reduce the

argument to fit in the range, otherwise an accumulated error will be introduced. Note

that the argument is in units of radians. If converting to degrees, note that 360 degrees

is equal to 2 radians.

Example

Chapter 6 Command Set

8 8

Sub main()

Dim myArg As Float

Dim result As Float

myArg = pi/4

result = cos(myArg) the result is 0.707107

Debug cos(pi/4)= ,result,CR

End Sub

8 9

Chapter 6 Command Set

COUNT

Syntax
COUNT Pin, Duration, Variable

Operation
Counts up the number of edge transitions that appear on a particular pin within a

specified time duration and places the value into the indicated variable.

Pin a constant or variable (0~23) that specifies the pin number where the edge

transitions will be counted. For the 24-pin BASIC Commander®, the Pin value

ranges from 0~15.

Duration a constant or variable (1~65535) that specifies the time duration

within which the edge transitions will be counted. The unit of Duration is 1 ms.

Variable a variable of WORD type, in which the count value will be stored.

Description
This command counts up any edge transitions that appear on the pin specified and

could be useful for counting up a number of external changing events. Any pin used

with the COUNT command will automatically be setup as an input upon execution.

The Duration specifies the time duration in unit of 1 ms. Every high-to-low and low-

to-high transition will be counted. The minimum width of two adjacent transitions of

the input signals should be greater than 10 s. In other words, the maximum input

signal frequency should be no more than 50kHz for an equal duty square waveform,

otherwise, some transitions will not be counted. If the high and low duty are not equal,

the shorter duty should be greater than 10 ms. In other words, the maximum input

frequency is limited by the shorter duty and will be much less than 50kHz. Note that if

the count is greater than 65535, it will overflow to 0 and continue counting.

Precautions should be taken for such cases.

Example
This program shows how to use the COUNT command to make an interesting and

simple reaction counter game to see how fast a button can be pressed. Remember to

connect a push button as shown below.

Chapter 6 Command Set

9 0

Vss

I/O Pin

10 K

I/O Pin
220

Vdd

Push
Button

Figure 6-3 Push Button Connection

Sub main()

DimPushBtn As Byte=0 Push button on P0

DimCycles As Word=0 Counted cycles

Dim m As Byte=0

Do

Debug CLS,_

How fast can you press within 5 seconds? , CR

Pause 1000

Debug Ready! ,CR

Pause 1000

Debug Set! ,CR

Pause 2000

Debug Go! ,CR

9 1

Chapter 6 Command Set

COUNT PushBtn, 5000, Cycles

Debug CR, Your score is , Cycles, CR, CR

Pause 2000

Debug Press button to try again!

Do

m=in(Pushbtn)

Loop Until m=0

Loop

End Sub

DEBUG

Syntax
DEBUG Item {, Item}

Operation
The DEBUG command allows the BASIC Commander® to communicate with the

user by displaying a message, a control code or a numeric value in the Terminal

Window within the innoBASIC™ Workshop.

Item a message, a control code or a variable to be displayed in the Terminal

Window. If there is more than one item, they should be separated by a comma.

Description
Some means has to be provided for the BASIC Commander® to communicate and

talk to the user and the method of doing this is via the Terminal Window in the

innoBASIC™ Workshop. This is done by inserting the DEBUG commands into the

program. Debugging programs is an essential part of any application development as

it is very rare to get things right the first time when programming. Therefore by

placing DEBUG commands into a program, you will know exactly where you are in

the program and what the contents are of variables in question. For example,

This command could be placed at an unexpected path in the program and when it

is branched to and executed, will show the related variable i which can help with the

diagnosis of malfunctions.

9 2

Chapter 6 Command Set

DEBUG This is the wrong path, and the variable I is , i

Control Code
In addition to debugging purposes, the DEBUG command is very useful as an

interactive human-machine interface. To assist in this matter and to provide a more

user-friendly console display, additional control codes are provided. These special

control codes are summarized in the following table:

9 3

Chapter 6 Command Set

Function

CLS

CR

TAB

CSRL

CSRR

CSRU

CSRD

BKSP

CLREOL

CLREOS

CSRXY (x,y)

CSRX (x)

CSRY (y)

BELL(n)

Description

Clear Screen

Carriage Return

Place a tab

Cursor move left

Cursor move right

Cursor move up

Cursor move down

Cursor move backward destructively

Clear from cursor to end of line

Clear from cursor to end of screen

Move cursor to position column x row y

Move cursor to position column x

Move cursor to position row y

Generate a Windows built-in number n sound effect

Data Formatters
Numerical data can be displayed in various formats in the Terminal Window. If no

specific way is specified then the value will be displayed in decimal format.

Therefore for the previous examples, this was not a problem and the values were

correctly displayed. However, say the value was required to be displayed in binary or

hex format, then the percentage symbol "%" followed by the desired format is used to

do so. The following table shows the various options:

9 4

Chapter 6 Command Set

Formatting Symbols

?

%DEC{n{L|R}}

%BIN{n{L|R}}

Description

If the optional ? formatter is used, an extra string

symbol = will be added before the displayed value and

a carriage return after the displayed value. The symbol

stands for a user-defined variable name.

Displays data in signed decimal format, the optional n

value stands for column width. If the given n value is

smaller than the actual digits, the width will be

automatically expanded to fit the actual number width.

Optional values L and R stand for left or right alignment. If

L or R is omitted, the default value is aligned left. Leading

0's are omitted in the display.

Displays data in an unsigned binary format, the optional

value n stands for column width. If the given n value is

smaller than the actual digits, 8 for 8-bit variables and 16

for16-bit variables, the width will be automatically

expanded to fit the actual number width. Optional values L

and R stand for left or right alignment. If L or R is omitted,

the default is aligned left. Leading 0's of 8- or 16-digit data

format are displayed.

Therefore in the case of the above example the DEBUG command could be

modified to display the variable in binary format as follows:

9 5

Chapter 6 Command Set

Formatting Symbols

%HEX{n{L|R}}

%CHR

%FLOAT{n.m{L|R}}

%REAL{n.m{L|R}}

%REP{n}

Description

Displays data in unsigned hexadecimal format, optional n

stands for column width. If the given n value is smaller

than the actual digits, 2 for 8-bit variables and 4 for16-bit

variables, the width will be automatically expanded to fit

the actual number width. Optional L and R stand for left or

right alignment. If L or R is omitted, the default is aligned

left. Leading 0's of 2- or 4-digit data format are displayed.

Displays data in ASCII character format

Displays the floating-point data in scientific format,

optional n stands for width of column and m stands for the

number of valid digit(s) from 1 to 5. If the given n value is

smaller than the actual digits, the width will be

automatically expanded to fit the actual number width.

Optional L and R stands for left or right alignment. If L or R

is omitted, the default is aligned left.

Same as %FLOAT{n.m{L|R}} mentioned above, except

that the floating-point number is displayed in real number

format.

Displays the const or variable repeatedly n times. If

optional n is not given, a default 1 is assigned.

Debug The value for i is , %BIN i

9 6

Chapter 6 Command Set

The Debug command requires a certain amount of time for communication

between the BASIC Commander® and the PC through the USB interface. For this

reason, in time-sensitive applications, precautions should be taken to avoid using the

Debug command within any program time critical path. When using the Debug

command in the development stage during debugging, there might be a timing

difference when the Debug command is later removed for formal operation.

Example

Sub main()

Dim X As Byte = 100

Debug ? X shows X=100 with carriage return

Debug Column 10, aligned to the left ,%DEC10L X,CR

Debug Column 10, aligned to the right , %DEC10R X,CR

End Sub

9 7

Chapter 6 Command Set

DEBUGFILE

Syntax
DEBUGFILE Item {, Item}

Operation
This command allows the BASIC Commander® to communicate with the user by

displaying a message, a control code or a numeric value in the Terminal Window and

also write the content to the specified file.

Item a message, a control code or a variable to be displayed in Terminal

Window and also written to the specified file.

Description
The DEBUGFILE command is the same as DEBUG command displaying the

contents of Item in the Terminal Window, but also exports the contents to a file. The

filename and the directory to place the file can be assigned in the

Preferences/Terminal Window under the Tools main menu.

Example

Sub main()

Dim I, j As Byte

For I = 1 to 9

For j = 1 to 9

Debugfile %DEC3R I * j

Next

Debug CR

Next

End Sub

9 8

Chapter 6 Command Set

DEBUGIN

Syntax
DEBUGIN Item { , Item}

Operation
This command allows users to feed data to the BASIC Commander® through the input

Box in run-time.

Item a variable that receives data from the input box. For operational

convenience, the Debugin command also supports the message and control code

that is displayed in the Terminal Window which helps the user understand more

about what kind of information is waiting to be inputted. Otherwise, the user has

to place another Debug command to provide such information. If there is more

than one item, they should be separated by a comma.

Description
Some means has to be provided for the BASIC Commander® to communicate and talk

to the user. The method of doing this is via the Terminal Window in the innoBASIC™

Workshop, by inserting DEBUGIN commands into the program which receives data

from the input box. This method can either be used for debugging programs or as a

human-machine interface for receiving data from the user. For example,

Other items are the same as a DEBUG command, please refer to the DEBUG

command for their usages.

Note that DEBUGIN command requires a certain amount of time for

communication between the BASIC Commander® and the PC through the USB

interface. For this reason, for time-sensitive applications, precautions should be taken

DEBUGIN Please enter your lucky number. , num, CR

9 9

Chapter 6 Command Set

to avoid using the DEBUGIN command in any program time critical path. While

using the DEBUGIN command in the development stage during debugging, there

might be a timing difference when the DEBUGIN command is later removed for

formal operation. If the DEBUGIN command is not removed for stand-alone

operation, when the USB interface is not connected to the PC, the program will enter

a dead loop as it continues to wait for data entry.

Example

Sub main()

Dim yourname As String * 20

Dim Key As Byte

Debugin Please enter your name. , yourname, CR

Debug Hi ,yourname, !

Do

Debugin CR, Enter in DEC: , Key, CR say, 100

Debug The number in DEC is: ,Key, CR

Debugin CR, Enter in BIN: , %BIN Key, CR say, 100

Debug The number in BIN is: ,%BIN Key, CR

Debugin CR, Enter HEX: , %HEX Key, CR say, FA

Debug The number in Hex is: ,%HEX Key, CR

Debugin CR, Enter a letter: , %CHR Key, CR

Debug The letter is , %CHR Key, , ASCII Code is , Key, CR

Loop

End Sub

1 0 0

Chapter 6 Command Set

DEBUGINFILE

Syntax
DEBUGINFILE Item

Operation
This command allows users to feed data to the BASIC Commander® from the

specified file.

Item a variable to receives data read from the specified file.

Description
The DEBUGINFILE command is the sames as DEBUGIN ccommand, except it reads

the value from a file instead the input box on the top of the Terminal Window. The

filename and the directory to place the file can be assigned in the Preferences/

Terminal Window under the Tools main menu.

1 0 1

Chapter 6 Command Set

DIM

Syntax
DIM Variable AS Type {* Size}

Operation
To declare local or global variables.

Variable the defined variable name where the value will be stored

Type one of the legal variable type names, including Boolean, Byte, Integer,

Word, Long, Float, Persistentbyte, Persistentinteger, Persistentword,

Persistentlong and Persistentfloat.

Size a constant to specify the size of a string type variable and the size of a

string is confined by the RAM available.

Description
All variables must be declared in advance. Conventionally, the variable data types are

of Boolean, Byte, Short, Word, Integer, DWord, Long, Float and String type which are

assigned with the RAM data memory, yet other featured variable types supported by

innoBASIC™ are the persistent type variables which are assigned with the persistent

EEPROM data memory. If DIM is used within any procedure, the variables declared

are local variable which means they are visible only inside the variables which can be

seen only inside the procedure where they are declared. On the contrary, if DIM is

used outside of all procedures, the variables are global, which means they are visible

throughout the entire program. Note that the persistent type variables are global in

nature, which means you must declare persistent type variables outside of all

procedures.

Unlike fundamental variables, the string literal can store non-numerical values of

more than one single character. Yet, due to limited RAM resources, a proper string

size should be given when declared.

1 0 2

Chapter 6 Command Set

Example

Dim G As Byte global variable, no initializer

Sub main()

Dim X,Y As Byte

Dim Z As Short =-1 local variable, optional initializer

Debug ? G

Debug ? X

Debug ? Y

Debug ? Z

End Sub

1 0 3

Chapter 6 Command Set

DO... LOOP

Syntax
DO {Modifier Condition}

{statements}

LOOP {Modifier Condition}

Operation
Will setup a program loop where commands will be either repeatedly executed or not,

depending upon user defined conditions.

Modifier is an optional modifier of WHILE or UNTIL, placed after DO or

LOOP, but not both. If a WHILE modifier is used, it will allow the loop to

continue if the condition is true. If an UNTIL modifier is used, it will allow the

loop to continue until the condition is true.

Condition Boolean expression

Statements optional legal statements, including the optional EXIT DO or

CONTINUE command(s).

Description
The basic DO... LOOP command will constitute an infinite loop, the commands

enclosed by DO and LOOP will be executed repeatedly. You may add the WHILE

qualifier at the beginning or the end of the loop, whereas the Boolean condition will

be tested. As long as the condition is true, the loop body will be executed. If the

WHILE is placed at the end of the loop, the loop body will be executed at least once.

The UNTIL qualifier is similar to the WHILE qualifier, except that the loop is

terminated rather than continuing when the Boolean condition is true. The statements

may contain the optional EXIT DO or CONTINUE command. The EXIT DO

command may be placed in the loop body, which exits the current loop immediately

before the loop limit test is executed. The CONTINUE command transfers execution

to the end of the containing block loop and begins the next iteration. Refer to Chapter

5 for further detailed explanation.

1 0 4

Chapter 6 Command Set

Example
Refer to Chapter 5 for further detailed examples.

1 0 5

Chapter 6 Command Set

DWORD2FLOAT

Syntax
Result = DWORD2FLOAT(Argument)

Operation
To convert a DWord value into its floating-point format.

Argument the DWord operand of the LONG2FLOAT function.

Result a floating-point variable that receives the result of the

DWORD2FLOAT function.

Command Description
The DWORD2FLOAT command converts a DWord value into its floating-point

format. The floating-point result will be an integral value ranging from 0 to

4294967295. Due to the single precision floating point employed, a DWord variable

may not be represented precisely. The nearest integral floating point value will be

returned instead. When using this command in your application program, care must

therefore be taken.

You can tell whether a DWord value can be represented precisely by examining

the number of bits in its binary format. Excluding the leading and trailing 0's of its

binary format, if the number of remaining bits is greater than 24, then it cannot be

precisely represented.

Example
Due to the single precision floating point employed, the value 4294967295 cannot be

represented precisely. The nearest value 4294967296 will be returned instead.

1 0 6

Chapter 6 Command Set

Sub main()

Dim MyDWord As DWord

Dim MyFloat As Float

MyDWord = 4294967295

MyFloat = DWORD2FLOAT(MyDWord)

Debug"MyDWord =", MyDWord,CR, MyFloat = ,MyFloat,CR

End Sub

1 0 7

Chapter 6 Command Set

ENUM...END ENUM

Syntax
ENUM Identifier

EnumeratorList

END ENUM

Operation
Declare an enumeration

Identifier the enumeration name.

EnumeratorList the list of all the enumerators with optional initial value(s).

Description
The ENUM command is a way to declare a constant. Enumeration must be declared

outside of any procedure, which means they are global declarations and have public

access only. An enumeration member with "=" is given the value of the constant

expression. When constant values are omitted, the order of enumeration member

declarations is significant. If the first enumerator value definition in the enumeration

has no initial value, the value of the enumeration starts from 0. If an enumerator has

no initial value, the previous enumerator value increased by 1 will be given. The

following example shows how to use the ENUM command. The enumeration

members are accessed by using the dot "." operator between the Identifier and the

Enumerator. The following example shows how to use the ENUM command.

1 0 8

Chapter 6 Command Set

Example

Enum Color

Red

Yellow = 3

Blue = 1

Green

End Enum

Sub main()

Debug Enumerator Red = , Color.Red, CR

Debug Enumerator Yellow = , Color.Yellow, CR

Debug Enumerator Blue = , Color.Blue, CR

Debug Enumerator Green = , Color.Green, CR

End Sub

1 0 9

Chapter 6 Command Set

EVENT...END EVENT

Syntax
EVENT ModuleName.EventName()

{statements}

END EVENT

Operation
Declare an Event procedure.

ModuleName the name of the module that the user declared which owns the

event in question.

EventName the name of the Event in question.

Statements any valid innoBASIC™ statement.

Description
The EVENT command declares a procedure, which will be invoked by a peripheral

module when a specified event occurs. The parentheses cannot be omitted even

although there is no argument applicable. Note that when declaring the Event

procedure, the Event name is composed of two parts. The first part is the module

name and the second part is the event name. The two names are connected with a dot.

The following example shows an event declaration and how to enable the Event

function.

1 1 0

Chapter 6 Command Set

Example

Note that when the program is in the EVENT procedure, other events will be blocked

out until the EVENT procedure is completely executed. It is highly recommended that

as few statements as possible are implemented within an EVENT procedure and that

as many handling statements as possible are implemented within the main program.

Peripheral MyKeypad As KeypadA @ 0

Event MyKeypad.KeyPressed()

Dim KeyID As Byte

MyKeypad.GetKeyID(KeyID)

Debug Key , KeyID, is Pressed! , CR

End Event

Sub main()

MyKeypad.EnableKeypressedEvent() Enable the Event

Debug Press Key Pad. , CR

Do:Loop

End Sub

1 1 1

Chapter 6 Command Set

EXP

Syntax
Result = EXP(Argument)

Operation
To return the natural exponent value of a floating-point argument.

Argument the floating-point operand of the EXP function.

Result a floating-point variable that receives the result of the EXP function.

Description
The EXP function returns the natural exponent value of a floating-point argument.

The result is always a positive value. In mathematics, it is denoted as y = eX, where e

is Euler's number 2.71828 . Its inverse function is the natural logarithm LOG

function.

Example

Sub main()

Dim Result As Float

Result = EXP(2.0)

Debug EXP of 2.0 is , result, CR

Result = EXP(-2.0)

Debug EXP of -2.0 is , result, CR

End Sub

1 1 2

Chapter 6 Command Set

EXP10

Syntax
Result = EXP10(Argument)

Operation
To return the base 10 exponent value of a floating-point argument.

Argument the floating-point operand of the EXP10 function.

Result a floating-point variable that receives the result of the EXP10 function.

Description
The EXP10 function returns the base 10 exponent value of a floating-point argument.

The result is always a positive value. In mathematics, it is denoted as y = 10X. Its

inverse function is the base 10 logarithm LOG10 function.

Example

Sub main()

Dim Result As Float

Result = EXP10(2.0) 100

Debug EXP10 of 2.0 is , result, CR

Result = EXP10(-2.0) 0.01

Debug EXP10 of -2.0 is , result, CR

End Sub

1 1 3

Chapter 6 Command Set

Sub main()

Dim MyFloat As Float

Dim MyByte As Byte

MyFloat = 2.4

MyByte = FLOAT2BYTE(MyFloat) he result is 2

Debug FLOAT2BYTE of 2.4 :", MyByte, CR

MyFloat = 2.5

MyByte = FLOAT2BYTE(MyFloat) the result is 3

Debug FLOAT2BYTE of 2.5 : , MyByte, CR

FLOAT2BYTE

Syntax
Result = FLOAT2BYTE(Argument)

Operation
To convert a floating-point value into a Byte.

Argument the floating-point operand of the FLOAT2BYTE function.

Result a Byte variable that receives the result of the FLOAT2BYTE function.

Description
The FLOAT2BYTE command converts a floating-point value into a Byte. The

decimal part of the number will be rounded. If the value exceeds the Byte value range,

a value of 0 or 255 will be provided.

Example

1 1 4

Chapter 6 Command Set

MyFloat = -1.0

MyByte = FLOAT2BYTE(MyFloat) the result is 0

Debug FLOAT2BYTE of -1.0 : , MyByte, CR

MyFloat = 256.0

MyByte = FLOAT2BYTE(MyFloat) the result is 255

Debug FLOAT2BYTE of 256.0 :", MyByte, CR

End Sub

1 1 5

Chapter 6 Command Set

Sub main()

Dim MyFloat As Float

Dim MyDword As Dword

MyFloat = 2.4

MyDword = FLOAT2DWORD(MyFloat) the result is 2

Debug FLOAT2DWORD of 2.4 : , MyDword, CR

MyFloat = 2.5

MyDword = FLOAT2DWORD(MyFloat) the result is 3

Debug FLOAT2DWORD of 2.5 : , MyDword, CR

FLOAT2DWORD

Syntax
Result = FLOAT2DWORD(Argument)

Operation
To convert a floating-point value into a DWord.

Argument the floating-point operand of the FLOAT2DWORD function.

Result a DWord variable that receives the result of the FLOAT2DWORD

function.

Description
The FLOAT2DWORD command converts a floating-point value into a DWord. The

decimal part of the number will be rounded. If the value exceeds the DWord value

range, a value of 0 or 4294967295 will be assigned.

Example

1 1 6

Chapter 6 Command Set

MyFloat = -1.0

MyDword = FLOAT2DWORD(MyFloat) the result is 0

Debug "FLOAT2DWORD of -1.0 : ", MyDword, CR

MyFloat = 4.3E9

MyDword = FLOAT2DWORD(MyFloat) the result is 4294967295

Debug "FLOAT2DWORD of 4.3E9 : ", MyDword, CR

End Sub

1 1 7

Chapter 6 Command Set

Sub main()

Dim MyFloat As Float

Dim MyInteger As Integer

MyInteger = 22

Debug MyInteger : , MyInteger, CR

MyFloat = 2.4

MyInteger = FLOAT2INTEGER(MyFloat) the result is 2

Debug FLOAT2INTEGER of 2.4 : , MyInteger, CR

MyFloat = 2.5

MyInteger = FLOAT2INTEGER(MyFloat) the result is 3

Debug FLOAT2INTEGER of 2.5 : , MyInteger, CR

FLOAT2INTEGER

Syntax
Result = FLOAT2INTEGER(Argument)

Operation
To convert a floating-point value into an integer.

Argument the floating-point operand of the FLOAT2INTEGER function.

Result an integer variable that receives the result of the FLOAT2INTEGER

function.

Description
The FLOAT2INTEGER command converts a floating-point value into an integer. The

decimal part of the number will be rounded. If the value exceeds the integer value

range, a value of +32767 or -32768 will be assigned.

Example

1 1 8

Chapter 6 Command Set

MyFloat = -1.0

MyInteger = FLOAT2INTEGER(MyFloat) the result is -1

Debug "FLOAT2INTEGER of -1.0 : ", MyInteger, CR

MyFloat = 32768.0

MyInteger = FLOAT2INTEGER(MyFloat) the result is 32767

Debug "FLOAT2INTEGER of 32768.0 : ", MyInteger, CR

MyFloat = -32769.0

MyInteger = FLOAT2INTEGER(MyFloat) the result is -32768

Debug "FLOAT2INTEGER of -32769.0 : ", MyInteger, CR

End Sub

1 1 9

Chapter 6 Command Set

Sub main()

Dim MyFloat As Float

Dim MyLong As Long

MyFloat = 2.4

MyLong = FLOAT2LONG(MyFloat) he result is 2

Debug FLOAT2LONG of 2.4 : , MyLong, CR

MyFloat = 2.5

MyLong = FLOAT2LONG(MyFloat) the result is 3

Debug FLOAT2LONG of 2.5 : , MyLong, CR

FLOAT2LONG

Syntax
Result = FLOAT2LONG(Argument)

Operation
To convert a floating-point value into a LONG type

Argument the floating-point operand of the FLOAT2LONG function.

Result a LONG variable that receives the result of the FLOAT2LONG

function.

Description
The FLOAT2LONG command converts a floating-point value into a LONG. The

decimal part of the number will be rounded. If the value exceeds the long integer

value range, a value of +2147483647 or -2147483648 will be assigned.

Example

1 2 0

Chapter 6 Command Set

MyFloat = -1.0

MyLong = FLOAT2LONG(MyFloat) the result is -1

Debug FLOAT2LONG of -1.0 : , MyLong, CR

MyFloat = 4.3E9

MyLong = FLOAT2LONG(MyFloat) the result is 2147483647

Debug FLOAT2LONG of 4.3E9 : , MyLong, CR

MyFloat = -4.3E9

MyLong =FLOAT2LONG(MyFloat) the result is -2147483648

Debug FLOAT2LONG of -4.3E9 : , MyLong, CR

End Sub

1 2 1

Chapter 6 Command Set

FLOAT2REALSTRING

Syntax
FLOAT2REALSTRING(Argument, StringVar)

Operation
To convert a floating-point value into an ASCII character string in real number

format.

Argument the floating-point operand of the FLOAT2REALSTRING function.

StringVar a string variable that receives the result of the conversion.

Description
The FLOAT2REALSTRING command converts a floating-point value into an ASCII

character string in real number format, which has 5-digit valid mantissa with radix

point. For example +0.31416. Note that the trailing zeros will be omitted, except the

first one after the radix point. For instance, 2 will be converted to +2.0.

Example

Sub main()

Dim MyFloat As Float

Dim MyString As String * 11

MyFloat = 0.31416

FLOAT2REALSTRING(MyFloat, MyString)

Debug FLOAT2REALSTRING of 0.31416 : , MyString, CR

End Sub

1 2 2

Chapter 6 Command Set

FLOAT2SHORT

Syntax
Result = FLOAT2SHORT(Argument)

Operation
To convert a floating-point value into a SHORT variable.

Argument the floating-point operand of the FLOAT2SHORT function.

Result a SHORT variable that receives the result of the FLOAT2INTEGER

function.

Description
The FLOAT2SHORT command converts a floating-point value into a SHORT. The

decimal part of the number will be rounded. If the value exceeds the SHORT value

range, a value of +127 or -128 will be assigned.

Example

Sub main()

Dim MyFloat As Float

Dim MyShort As Short

MyFloat = 2.4

MyShort = FLOAT2SHORT(MyFloat) the result is 2

Debug FLOAT2SHORT of 2.4 : , MyShort, CR

MyFloat = 2.5

MyShort = FLOAT2SHORT(MyFloat) the result is 3

Debug FLOAT2SHORT of 2.5 : , MyShort, CR

1 2 3

Chapter 6 Command Set

MyFloat = -1.0

MyShort = FLOAT2SHORT(MyFloat) the result is -1

Debug FLOAT2SHORT of -1.0 : , MyShort, CR

MyFloat = 128.0

MyShort = FLOAT2SHORT(MyFloat) the result is 127

Debug FLOAT2SHORT of 128 : , MyShort, CR

MyFloat = -129.0

MyShort = FLOAT2SHORT(MyFloat) the result is -128

Debug FLOAT2SHORT of -129 : , MyShort, CR

End Sub

1 2 4

Chapter 6 Command Set

FLOAT2STRING

Syntax
FLOAT2STRING(Argument, StringVar)

Operation
To convert a floating-point value into an ASCII character string in floating-point

format.

Argument the floating-point operand of the FLOAT2STRING function.

StringVar a string variable that receives the result of the conversion.

Description
The FLOAT2STRING command converts a floating-point value into an ASCII

character string in floating-point format which is composed of a sign character, a 5-

digit mantissa with radix point, an exponent sign character E, the exponent sign

character and 2-digit exponent. For example +3.1416E-01.

Example

Sub main()

Dim MyFloat As Float

Dim MyString As String * 13

MyFloat = 0.31416

FLOAT2STRING(MyFloat, MyString)

Debug FLOAT2STRING of 0.31416 : , MyString, CR

End Sub

1 2 5

Chapter 6 Command Set

Sub main()

Dim MyFloat As Float

Dim MyWord As Word

MyFloat = 2.4

MyWord = FLOAT2WORD(MyFloat) the result is 2

Debug FLOAT2WORD of 2.4 : , MyWord, CR

MyFloat = 2.5

MyWord = FLOAT2WORD(MyFloat) the result is 3

Debug FLOAT2WORD of 2.5 : , MyWord, CR

FLOAT2WORD

Syntax
Result = FLOAT2WORD(Argument)

Operation
To convert a floating-point value into a Word.

Argument the floating-point operand of the FLOAT2WORD function.

Result a Word variable that receives the result of the FLOAT2WORD

function.

Description
The FLOAT2WORD command converts a floating-point value into a Word. The

decimal part of the number will be rounded. If the value exceeds the Word value

range, a value of 0 or 65535 will be assigned.

Example

1 2 6

Chapter 6 Command Set

MyFloat = -1.0

MyWord = FLOAT2WORD(MyFloat) the result is 0

Debug FLOAT2WORD of -1.0 : , MyWord, CR

MyFloat = 65536.0

MyWord = FLOAT2WORD(MyFloat) the result is 65535

Debug FLOAT2WORD of 65536 : , MyWord, CR

End Sub

1 2 7

Chapter 6 Command Set

FLOOR

Syntax
Result = FLOOR(Argument)

Operation
To return the nearest integer that is not greater than the floating-point argument value.

Argument the floating-point operand of the FLOOR function.

Result a floating-point variable that receives the result of the FLOOR

function.

Description
The FLOOR command returns the nearest integer (floating-point value) that is not

greater than the floating-point argument value. Usually this is used to round a

floating-point value into an integer. Another pairing function is the CEIL function

which returns the nearest integer (floating-point value) that is not smaller than the

floating-point argument value.

Example

Sub main()

Dim Result As Float

Result = FLOOR(2.3) he result is 2.0

Debug FLOOR of 2.3 is , result,CR

Result = FLOOR(-2.3) the result is -3.0

Debug FLOOR of -2.3 is , result,CR

End Sub

1 2 8

Chapter 6 Command Set

FOR...NEXT

Syntax
FOR Index = StartValue TO EndValue {STEP StepValue}

{Statements}

NEXT {Index}

Operation
Will establish a repeatable loop between the FOR and NEXT commands.

Index this is a variable which is used to store a numerical value which

controls the number of times the loop is run. For program clarity considerations,

placing the optional Index after NEXT is recommended.

StartValue a constant or variable which defines the initial value of the Counter

EndValue a constant or variable which defines the end value of Counter. If the

value of the Counter exceeds this value, then when a NEXT command is

encountered, the program will leave the FOR...NEXT loop and execute the

command following the NEXT command.

StepValue a constant or variable which defines the amount by which Index is

increased each time the loop is run. If the STEP command is not used, a default

step Value 1 will be employed.

Statements optional legal statements, including the optional EXIT FOR or

CONTINUE command(s).

Description
The FOR and NEXT commands will establish a repeatable loop, with any number of

statements placed within the loop body. Each time the NEXT command is

encountered the program returns to the FOR command. The first time the FOR

command is encountered, the variable Index will be loaded with StartValue and for the

following iterations, Index is incremented by the StepValue. If the new value of Index

does not exceed EndValue, the loop body will be executed again, otherwise the

1 2 9

Chapter 6 Command Set

program will proceed to the consequent statement after the NEXT command. Other

loops can be nested within a FOR...NEXT loop, with the maximum number of

nestings limited by the program space. The statements may contain the optional EXIT

FOR or CONTINUE command. The EXIT FOR command may be placed in the loop

body which exits the current loop immediately before the loop limit test is executed.

The CONTINUE command transfers execution to the end of the containing block loop

and begins the next iteration.

Example
Refer to Chapter 5 for further detailed examples.

1 3 0

Chapter 6 Command Set

FREQOUT

Syntax
FREQOUT Pin, Duration, Frequency

Operation
Generate a square wave on the specified pin.

Pin a constant or variable value (0~23) to specify the pin that generates the

square wave signal. For a 24-pin BASIC Commander, the range of the pin value

is 0~15.

Duration a constant or variable value ranging from 0 to 65535 to specify the

duration of the signal generation in ms.

Frequency a constant or variable value ranging from 0 to 65535 to specify

the frequency of the square wave in Hz.

Description
FREQOUT command is used to generate a square wave on the specified pin. It is

quite convenient to be used to generate musical notes or to generate an infrared

carrier.

Example
In the following program, we use the FREQOUT command to generate 8 notes of a

scale on a piezo buzzer through Pin 0 for 1 second.

Sub main()

FREQOUT 0, 1000, 523 Do

FREQOUT 0, 1000, 587 Re

FREQOUT 0, 1000, 659 Mi

FREQOUT 0, 1000, 698 Fa

1 3 1

Chapter 6 Command Set

FREQOUT 0, 1000, 784 Sol

FREQOUT 0, 1000, 880 La

FREQOUT 0, 1000, 988 Ti

FREQOUT 0, 1000, 1047 Do

End Sub

1 3 2

Chapter 6 Command Set

FUNCTION...END FUNCTION

Syntax
FUNCTION FunctionName({Arglist}) AS ReturnType

{Statements}

END FUNCTION

Operation
Declare a function with an optional argument list.

FunctionName the name of the function contains a sequence of letters, digits

and underscore. The leading character must be a letter.

Arglist is a list of optional arguments required in the function. Each argument

is preceded with either a byval or byref modifier to indicate the argument passing

method. The parenthesis cannot be omitted even though no argument required.

ReturnType specifies the return data type, which may be Byte, Integer, Word,

Long or Float.

Statements - any valid innoBASIC™ statement.

Description
The FUNCTION command declares a Function which can be invoked by its

FunctionName to execute some user-defined function. Unlike Sub, there is a value

returned to the caller.

1 3 3

Chapter 6 Command Set

Function Sum(X As Short,Y As Short) As Integer

Return X+Y

End Function

Sub main()

Dim X, Y As Short

Dim Z As Integer

X=1

Y=2

Z=Sum(X,Y)

Debug X= , X, CR, Y= , Y, CR, Z=X+Y= , Z, CR

End Sub

Example

GETDIRPORT

Syntax
Result = GETDIRPORT Port

If the port number is a constant, you may also use one of the following formats

instead.

Result = GETDIRPORT0

Result = GETDIRPORT1

Result = GETDIRPORT2

Operation
Obtains the I/O direction settings of the specified port.

Port a constant or variable (0 ~2) that specifies the port number. Port 0

consists of pins P0~P7, Port 1 consists of pins P8~P15 and Port 2 consists of pins

P16~P23. For the 24-pin BASIC Commander® which has two ports, the Port

value is 0 or 1.

Result a Byte variable to receive the port direction setting.

Description
The GETDIRPORT command is used to read the current I/O direction settings of the

specified port for applications in which the I/O directions may switch between input

and output mode during program execution. Data 0 stands for output and 1 stands for

input mode. For pins which with a smaller number are of the lower bit order of a data

byte. For example, the P0 setting will appear in the Bit 0 of the data read. The I/O

directions default to input after the program starts.

Chapter 6 Command Set

1 3 4

Chapter 6 Command Set

1 3 5

Sub main()

Dim KeyAs Byte

Dim PortStatus As Byte

Start: P0 ~ P7 are default input mode.

WRITEPORT0 &H00 Write low to output buffers

Do

Debugin Input any key to turn on LED 0, 2, 4, 6: ,%CHR Key, CR

SETDIRPORT 0,&HAA Switch P0, P2, P4, P6 to OUTPUT mode

PortStatus=GETDIRPORT0

Debug Port 0 status is: , %BIN PortStatus, CR,CR

Debugin Input any key to turn on LED 1, 3, 5, 7: ,%CHR Key, CR

SETDIRPORT 0,&H55 Switch P1, P3, P5, P7 to OUTPUT mode

PortStatus=GETDIRPORT0

Debug Port 0 status is: , %BIN PortStatus,CR,CR

Loop

End Sub

Example
The following example changes the I/O direction of Port 0, which is connected to

seven LEDs through resistors. The LEDs will turn on and off accordingly.

Chapter 6 Command Set

1 3 6

GOTO

Syntax
GOTO LabelName

Operation
The GOTO command will cause the program to move to a specified program location,

labeled with the user-given LabelName.

LabelName this is a label that specifies the point where the program will

branch to.

Description
The GOTO command will force the program to jump to a user specified location,

which contains a LabelName followed with a semicolon. This location is given by the

label name which follows the GOTO command. The statement following the GOTO

command will not be executed. What will actually be executed is the next command

after executing the GOTO command as specified by the label. The GOTO command

is therefore used to give the user a direct means of program control. Users are not

recommended to use the GOTO statement in their programs, which usually will cause

difficulties in reading the program. However, for a nested statement structure, to

branch to the most external loop, it is convenient to use the GOTO statement.

Chapter 6 Command Set

1 3 7

Sub main()

Start:

Debug Tick! ,CR

Pause 1000

Goto Start

End Sub

Example
The following demonstrates how to use the GOTO command. You can always find

more structured statements instead.

Chapter 6 Command Set

1 3 8

HIGH

Syntax
HIGH Pin

Operation
Sets the specified pin to a logic high level

Pin a constant or variable (0~23) that specifies the pin that the high level is to

be applied to. For the 24-pin BASIC Commander®, the Pin value ranges from

0~15.

Description
This command will set the specified pin to a high level of around 5 volts. Usually, a

pin must be previously changed in advance to input or output mode before executing

the corresponding input or output operations. However, as only one pin is involved in

the HIGH operation, the pin will be changed to the output mode automatically by the

system. It is not necessary for the user to change the mode manually to an output pin

before executing this instruction.

The following shows a simple circuit to illuminate a small LED using the HIGH

and LOW command. When the HIGH command is executed on the pin as shown, the

LED will be turned off and turned on when LOW command is executed. Each I/O pin

has a typical sink current capacity of around 20 mA and a source capacity of around

10mA which means the device is able to consume more power when the pin is low.

Chapter 6 Command Set

1 3 9

Pin

Pin

R1

mho 086mho 086

R1

LED1

Vdd

LED1

D1

Q1
D2R1

RLY1

RLY2

Q2R2

VddVdd

Pin

Pin

Figure 6-4 Illuminating a small LED using HIGH and LOW commands

Figure 6-5 Using transistors to drive heavier loads

Note that as the pins have current drive limitations, driving heavier loads such as

light bulbs or relays, which draw much more current than LEDs, will require a

transistor switch to be connected to the output terminal. Some simple circuits to

implement this are shown below.

is important to check the relay manufacturer's datasheet to determine the relay

coil current requirements and to ensure that the transistor can handle this current.

Chapter 6 Command Set

1 4 0

Example
For the LED circuit shown above the following program will cause the LED

connected to Pin 0 to flash at a fixed rate of 1 Hz.

Sub main()

Do

HIGH 0 LED on

Pause 500 0.5 second delay

LOW 0 LED off

Pause 500 0.5 second delay

TOGGLE 0 LED on

Pause 500 0.5 second delay

TOGGLE 0 LED off

Pause 500 0.5 second delay

Loop

End Sub

Chapter 6 Command Set

1 4 1

I2CIN

Syntax
I2CIN SDA, SCL, SlaveID, { Address {|Length}, } [InputData] {, Err_Label }

Operation
Receive data from devices that use I2C protocol.

SDA a constant or variable value (0~23) to specify the pin that will be used as

SDA pin. After the execution of the command, the specified pin will be

configured as an input pin. For a 24-pin BASIC Commander® , the range of the

pin value is 0~15.

SCL a constant or variable value (0~23) to specify the pin that will be used as

SCL pin. After the execution of the command, the specified pin will be

configured as an input pin. For a 24-pin BASIC Commander®, the range of the

pin value is 0~15.

SlaveID a constant or variable value ranging from 0 to 127 to specify the

unique I2C slave ID.

Address an optional constant or variable value ranging from 0 to 4294967295

to specify the memory address of I2C slave device.

Length an optional constant or variable value to specify the address format and

length (in bytes). If your address size conform to the I2C slave device and the low

byte first (Little Endian), then you may omit this parameter. Otherwise you need

to set the Length parameter. The lower 3 bits specify the number of bytes of the

address ranging from 1 to 4. If the value given is greater than the actual size of

the variable or if other values, namely 0, 5, 6 or 7 is given, than the actual size of

the variable address will be assigned automatically. The highest bit with value 0

indicates the low byte of address first, otherwise with value 1, the high byte of

address first. The highest bit with value 1 is equivalent to 128 in decimal.

Chapter 6 Command Set

1 4 2

Value{|L}

String{|L}

Array{|L}

%Skip Value

Value is a constant or variable of 1~4 byte width, while L is an optional

constant or variable of value 0~255, which defines the number of bytes to

be transmitted. L=0 the whole value will be transmitted. If the number of

byte designated by L is greater than that of Value, the whole bytes of Value

will be transmitted.

String is a string variable, while L is an optional constant or variable

ranging 0~255 specifying the number characters to be received and stored

in the string. If L is greater than the length of String, or is equal to 0, the

whole String will be received and stored in the string.

Array is a variable array, while L is an optional constant or variable ranging

0~255 specifying the number of elements, starting from index number 0, to

be received and stored. If L is greater than the size of Array, or is equal to

0, the whole Array will be received and stored.

Value is a 1-byte constant or variable ranging 0~255 specifying the number

of data bytes to be skipped from current data receiving.

InputData a list of variables to store the received data, which can be one of

the following formats.

Err_Label a label that specifies where to branch if an I2C receiving error

occurs.

Description
I2CIN command is used to receive data from devices that can use standard I2C

protocol. It has 7-bit address space. Note that this is a software simulated command,

for high speed I2C applications, please check the transmission speed limitation.

Chapter 6 Command Set

1 4 3

Sub main()

Dim SDA as Byte

Dim SCL as Byte

Dim SlaveID as Byte

Dim Address1 as Byte

Dim Address2 as DWord

Dim Value1 as byte

Dim Value2 as Word

Dim Value4 as DWord

Dim MyString as String*20

Dim MyArray(9) as byte

Dim L1 as byte

Dim L2 as byte

Dim L3 as byte

SDA=1 set SDA at pin 1

SCL=2 set SCL at pin 2

SlaveID=30

Address1=12

Address2=34562

L1=2

L2=5

L3=130

I2CIN SDA, SCL, SlaveID,[Value1] receive 1-byte data

I2CIN SDA, SCL, SlaveID,[Value2] receive 2-byte data

I2CIN SDA, SCL, SlaveID,[Value4] receive 4-byte data

I2CIN SDA, SCL, SlaveID,[Value4|L1] receive 2-byte data

I2CIN SDA, SCL, SlaveID,[MyString] receive the whole string

I2CIN SDA, SCL, SlaveID,[MyString|L2] receive 5 bytes only

I2CIN SDA, SCL, SlaveID,[MyArray] receive the whole array

I2CIN SDA, SCL, SlaveID,[MyArray |L2] receive 5 bytes only

I2CIN SDA, SCL, SlaveID,[%Skip Value1] skip bytes specified by Value1

Chapter 6 Command Set

1 4 4

send 1-byte address and receive 1-byte data

I2CIN SDA, SCL, SlaveID, Address1, [Value1]

send 4-byte address and receive 1-byte data

I2CIN SDA, SCL, SlaveID, Address2, [Value1]

send 2-byte address (low byte first) and receive 1-byte data

I2CIN SDA, SCL, SlaveID, Address2|L1, [Value1]

send 2-byte address (high byte first) and receive 1-byte data

I2CIN SDA, SCL, SlaveID, Address2|L3, [Value1]

send 2-byte address, receive 1-byte data and set error label

I2CIN SDA, SCL, SlaveID, [Value1], Err_Label

send 2-byte address, receive 1-byte data and set error label

I2CIN SDA, SCL, SlaveID, Address2|L1, [Value1], Err_Label

receive more items in one command

I2CIN SDA, SCL, SlaveID, [Value1, Value4, MyString|L2, MyArray, MyArray|L2]

arbitrary transmission setting and set error label

I2CIN SDA, SCL, SlaveID, Address2, [Value1, Value2], Err_Label

Debug I2C Receiving Complete! , CR

Do

Loop

Err_Label:

Debug I2C Error! , CR

Do

Loop

End sub

Chapter 6 Command Set

1 4 5

I2COUT

Syntax
I2COUT SDA, SCL, SlaveID, { Address {|Length}, } [OutputData] {, Err_Label }

Operation
Receive data from devices that use I2C protocol.

SDA a constant or variable value (0~23) to specify the pin that will be used as

SDA pin. After the execution of the command, the specified pin will be

configured as an input pin. For a 24-pin BASIC Commander®, the range of the

pin value is 0~15.

SCL a constant or variable value (0~23) to specify the pin that will be used as

SCL pin. After the execution of the command, the specified pin will be

configured as an input pin. For a 24-pin BASIC Commander®, the range of the

pin value is 0~15.

SlaveID a constant or variable value ranging from 0 to 127 to specify the

unique I2C slave ID.

Address an optional constant or variable value ranging from 0 to 4294967295

to specify the memory address of I2C slave device.

Length an optional constant or variable value to specify the address format

and length (in bytes). If your address size conform to the I2C slave device and the

low byte first (Little Endian), then you may omit this parameter. Otherwise you

need to set the Length parameter. The lower 3 bits specify the number of bytes of

the address ranging from 1 to 4. If the value given is greater than the actual size

of the variable or if other values, namely 0, 5, 6 or 7 is given, than the actual size

of the variable address will be assigned automatically. The highest bit with value

0 indicates the low byte of address first, otherwise with value 1, the high byte of

address first. The highest bit with value 1 is equivalent to 128 in decimal.

OutputData a list of data to be transmitted, which can be one of the following

formats.

Chapter 6 Command Set

1 4 6

Value{|L}

String{|L}

Array{|L}

%Rep Value {/L}

TEXT

Value is a constant or variable of 1~4 byte width, while L is an optional

constant or variable of value 0~255, which defines the number of bytes to

be transmitted. L=0 the whole value will be transmitted. If the number of

byte designated by L is greater than that of Value, the whole bytes of Value

will be transmitted.

String is a user-defined string, while L is an optional constant or variable of

value 0~255, which defines the number of characters in String to be

transmitted. L=0 the whole string will be transmitted. Note that the end of a

string is denoted with a null character 0. If L is greater than the length of

string, the whole string will be transmitted.

Array is a variable array, while L is an optional constant or variable ranging

0~255 specifying the number of elements, starting from index number 0, to

be transmitted . If L is greater than the size of Array, or is equal to 0, the

whole Array will be transmitted.

Value is a 1~4 bytes constant or variable, while L is constant or variable

ranging 0~255 specifying number of times the Value will be transmitted

repeatedly. If L is equal to 0, the Value will be transmitted once.

Text string, for instance Hello World!

Err_Label a label that specifies where to branch if an I2C transmission error

occurs.

Description
I2COUT command is used to send data to devices that can accept standard I2C

protocol. It has 7-bit address space. Note that this is a software simulated command,

for high speed I2C applications, please check the transmission speed limitation.

Example
In the following program, we use the I2COUT command to transmit data to another

I2C device.

Chapter 6 Command Set

1 4 7

Sub main()

Dim SDA as Byte

Dim SCL as Byte

Dim SlaveID as Byte

Dim Address1 as Byte

Dim Address2 as DWord

Dim Value1 as byte

Dim Value2 as Word

Dim Value4 as DWord

Dim MyString as String *20

Dim MyArray(9) as byte = {0,1,2,3,4,5,6,7,8,9}

Dim L1 as byte

Dim L2 as byte

Dim L3 as byte

SDA=1 set SDA at pin 1

SCL=2 set SCL at pin 2

SlaveID=30

Address1=12

Address2=34562

L1=2

L2=5

L3=130

MyString= Hello World!

I2COUT SDA, SCL, SlaveID, [Value1] send 1-byte data

I2COUT SDA, SCL, SlaveID, [Value2] send 2-byte data

I2COUT SDA, SCL, SlaveID, [Value4] send 4-byte data

I2COUT SDA, SCL, SlaveID, [Value4|L1] send 2-byte data

I2COUT SDA, SCL, SlaveID, [MyString] send Hello World! string

Chapter 6 Command Set

1 4 8

I2COUT SDA, SCL, SlaveID, [MyString|L2] send Hello string

I2COUT SDA, SCL, SlaveID, [MyArray] send array{0,1,2,3,4,5,6,7,8,9}

I2COUT SDA, SCL, SlaveID, [MyArray |L2] send array {0,1,2,3,4}

I2COUT SDA, SCL, SlaveID, [%Rep Value1|L1] repeat sending Value1 twice

I2COUT SDA, SCL, SlaveID,[Hello World!] send Hello World! string

I2COUT SDA, SCL, SlaveID, [1234] send 1234 (2-byte) data

I2COUT SDA, SCL, SlaveID, Addr1, [Value1] send 1-byte Addr and 1-byte data

I2COUT SDA, SCL, SlaveID, Addr2, [Value1] send 4-byte Addr and 1-byte data

send 2-byte Address (low byte first) and 1-byte data

I2COUT SDA, SCL, SlaveID, Address2|L1, [Value1]

send 2-byte Address (high byte first) and 1-byte data

I2COUT SDA, SCL, SlaveID, Address2|L3, [Value1]

send 1-byte data and set error label

I2COUT SDA, SCL, SlaveID, [Value1] ,Err_Label

send 2-byte address, 1-byte data and set error label

I2COUT SDA, SCL, SlaveID, Address2|L1 ,[Value1] ,Err_Label

transmit more items in one command

I2COUT SDA, SCL, SlaveID, [Value1, Value4, MyString|L2, MyArray, MyArray|L2]

arbitrary transmission setting and set error label

I2COUT SDA, SCL, SlaveID, Address2, [Value1, Value2, 1234], Err_Label

Debug I2C Transmission Complete! , CR, CR

Do

Loop

Chapter 6 Command Set

1 4 9

Err_Label:

Debug I2C Error! , CR

Do

Loop

End sub

Chapter 6 Command Set

1 5 0

IF...THEN...ELSE

Syntax
Two forms of IF...THEN...ELSE commands are available, namely block and line

version of IF...THEN...ELSE commands.

Line Version:

IF Condition THEN Statements {ELSE Statements}

Block Version:

IF Condition THEN

Statements

{ELSEIF Condition THEN

Statements}

{ELSE

Statements}

END IF

Operation
The IF...THEN...ELSE command executes commands based on expression evaluation.

Condition an expression of condition(s) that can be evaluated as a Boolean

value.

Statements any valid innoBASIC™ statement.

Description
The IF...THEN...ELSE command is the basic conditional command. Each expression

in an IF...THEN...ELSE command must be convertible to Boolean. If the expression

in the IF command is True, the statements enclosed by the THEN block are executed.

If the expression is False, each of the ELSEIF expressions is evaluated. If one of the

Chapter 6 Command Set

1 5 1

ELSEIF expressions evaluates to True, the corresponding block is executed. If no

expression evaluates to True and there is an ELSE block, the ELSE block is executed.

Once a block finishes executing, the program execution passes to the END IF

command. The line version of IF...THEN...ELSE command is available for program

simplicity when there is only one statement after THEN and ELSE. In the line version

you may place more than one statement after THEN and ELSE by adding a colon ":"

between two statements.

Example
Refer to Chapter 5 for further detailed examples.

Chapter 6 Command Set

1 5 2

IN

Syntax
Result = IN Pin

Operation
Reads the external logic input status of the specified pin.

Pin a constant or variable (0~23) that specifies the pin to be read. For the 24-

pin BASIC Commander®, the Pin value ranges from 0~15.

Result a Byte variable to receive the external logic level on Pin.

Description
This command will read the external logic level status from the specified pin. Usually,

a pin must be changed in advance to input mode. However, as only one pin is

involved in the IN operation, the pin will be changed to the input mode automatically

by the system. It is not necessary for the user to change the mode manually to an input

pin before executing this instruction. Note that after power-on, all the I/O pins will be

in an input mode.

Example
The following example shows how to use IN command to read an external logic level.

Chapter 6 Command Set

1 5 3

Vss

4.7 K

P0

Vdd

Figure 6-6 Reading an external logic input status from P0

Sub main()

Do

Wait:

If IN(0) = 1 Then

Pause 10

Goto Wait

Else

Debug Button is pressed. , CR

Release:

If IN(0) = 0 Then Goto Release

Debug Button is released. , CR

End If

Loop

End Sub

Chapter 6 Command Set

1 5 4

INPUT

Syntax
INPUT Pin

Operation
Configures the specified Pin to the input mode.

Pin a constant or variable (0~23) that specifies which pin will be set to the

input mode. For the 24-pin BASIC Commander®, the Pin value ranges from

0~15.

Description
If you would like to read a digital signal from the outside world, then first the pin on

which the data is to be read should have been changed to an input mode beforehand.

Due to the simplicity of the pin-related input output commands, the mode change

implementation is automatically carried out by the system. The user need only simply

use the input output commands without worrying about the direction of the pins in

question. However, this INPUT command is still provided and note that if you use the

INPUT command to change a pin from an output mode to an input mode, the high/low

state of the pin will disappear and the pin will be placed into a high impedance state.

Therefore the addition of a pull-high resistor on the pin is recommended to avoid

uncertain logic states existing which might result in unwanted errors logically or

electrically.

For commands that rely on input pins, like PULSIN and SERIN, the mode

corresponding pins will be changed to the input mode automatically. The default

mode after a program start (reset) is the input mode.

Chapter 6 Command Set

1 5 5

Example
The following example changes the I/O directions of P0, which connects an LED

through a resistor, and the LED will turn on/off accordingly.

P0

330 ohm

R1

Vdd

LED1

Figure 6-17 Input/Output Circuit

Sub main()

Dim key As Byte

Start:

WRITEPORT0 &H00 Write low to output buffers

Do

Debugin Input any key to turn on LED. , %CHR key, CR

OUTPUT 0 Switch P0 to OUTPUT mode, turn on LED0

Debugin Input any key to turn off LED. , %CHR key, CR

INPUT 0 Switch P0 to INPUT mode, turn off LED0

Loop

End Sub

Chapter 6 Command Set

1 5 6

INTEGER2FLOAT

Syntax
Result = INTEGER2FLOAT(Argument)

Operation
To convert an Integer value into its floating-point format.

Argument the Integer operand of the INTEGER2FLOAT function.

Result a floating-point variable that receives the result of the

INTEGER2FLOAT function.

Description
The INTEGER2FLOAT command converts an Integer value into its floating-point

format. The floating-point result will be an integral value ranging from -32768.0 to

+32767.0.

Example

Sub main()

Dim MyInteger As Integer

Dim MyFloat As Float

MyInteger = -32768

MyFloat = INTEGER2FLOAT(MyInteger)

Debug INTEGER2FLOAT of -32768 : , MyFloat, CR

MyInteger = 32767

MyFloat = INTEGER2FLOAT(MyInteger)

Debug INTEGER2FLOAT of 32767 : , MyFloat, CR

End Sub

Chapter 6 Command Set

1 5 7

KEYIN

Syntax
KEYIN Item

Operation
This command allows users to feed data to the BASIC Commander® from the input

box in run-time.

Item a variable that receives data from the input box.

Description
The KEYIN command is the same as DEBUGIN command receiving value for

variable Item from the input box on the top of the Terminal Window, but it does not

require the <Enter> key entry. The value typed in the input box will be fetched

immediately. If there is no data entering, the program will be waiting at this

command.

Example

Sub main()

Dim cKey As Byte

Do

Keyin cKey

Debug %CHR cKey Show character in the terminal window

Loop

End Sub

Chapter 6 Command Set

1 5 8

KEYSCAN

Syntax
KEYSCAN Item

Operation
This command allows users to scan data from the input box in run-time.

Item a variable to store data scanned from the input box.

Description
The KEYSCAN command is the same as KEYIN command, except it does not wait

for data entering from the input box on the top of the Terminal Window. At the

moment of KEYSCAN execution, if there is no value entered to be fetched, value 0

will be returned and the program moves on to the next statement.

Example

Sub main()

Dim cKey As Byte

Do

Keyscan cKey

If cKey<>0 then

Debug %CHR cKey show character in the terminal window

End If

Loop

End Sub

Chapter 6 Command Set

1 5 9

LCASE

Syntax
LCASE(TargetString)

Operation
Changes the specified string to lower case letters.

TargetString the string to be converted.

Description
The LCASE command changes the specified string to lower case letters.

Example

Sub main()

Dim MyString As String * 12

MyString = Hello World!

Debug Original string: , MyString, CR

LCASE(MyString)

Debug All in lower case: , MyString, CR

UCASE(MyString)

Debug All in upper case: , MyString, CR

End Sub

Chapter 6 Command Set

1 6 0

LCDCMD

Syntax
LCDCMD Pin, Command

Operation
Send command to an LCD Module.

Pin a constant or variable (1, 9 or 17) that specifies the first pin of seven

contiguous pins where the LCD Module is connected. 1 stands for Pin 1 to Pin 7,

9 stands for Pin 9 to 15 and 17 stands for Pin 17 to 23. For the 24-pin BASIC

Commander®, the Pin value will be 1 and 9 only.

Command const or variable (0~255) that specifies the LCD command to send.

Description
The three LCD commands (LCDCMD, LCDIN and LCDOUT) allow the BASIC

Commander® to interface directly to a standard LCD display that employs a Hitachi

44780 or compatible LCD controller. There are several 1x16, 2x16 and 4x20 character

LCD modules available. To minimize the pins required, the 4-bit interface to the LCD

is employed. Therefore a total of seven I/O pins are required. To provide flexibility to

users, you may specify the first Pin Number of 1, 9 or 17, which means you are to use

P1~P7, P9~P15 or P17~P23. The following drawing shows the wiring when P1~P7

are used.

Chapter 6 Command Set

1 6 1

When the LCD is first powered-up, it defaults to an 8-bit interface and must be

configured as a 4-bit bus before sending commands. This process is known as

initializing the LCD and is the first thing your program should do upon starting up.

Refer to the Example section for the LCD initialization code The Hitachi 44780

LCD controller provides some special instructions for initializing the display, moving

the cursor, changing the default layout, etc. Refer to the table below.

1 2 3 4 5 6 7 8 9 10 1112 13 14

Figure 6-8 Wiring connection when using P1~P7

Chapter 6 Command Set

1 6 2

For most users, the commands shown above are should be sufficient, however,

for more advanced applications you may need the commands shown below, which

will allow even more powerful control of the LCD module.

Action

Do Nothing

Clear display

Home display

Inc Cursor

Display off

Display On

Blinking Cursor

Underline Cursor

Cursor left

Cursor right

Scroll Left

Scroll right

Move to CGRAM

Address

Move to DDRAM

Address

Command (in

Decimal)

0

1

2

6

8

12

13

14

16

20

24

28

64 + address

128 + address

Description

No operation

Clear the display and move the cursor to home

position

Move the cursor and to home position

Set the cursor direction to the right, without a

display shift

Turn off the display (display data is retained)

Turn on the display without the cursor (display is

restored)

Turn on the display with blinking cursor

Turn on the display with underlined cursor

Move the cursor one character to the left

Move the cursor one character to the right

Scroll the display one character to the left

Scroll the display one character to the right

Move the pointer to the Character RAM location

Move the cursor to the Display Data RAM

location

Chapter 6 Command Set

1 6 3

Action

Clear Display

Home Display

Entry Mode

Display/Cursor

Scroll Display /

Shift Cursor

Function Set

Move to CGRAM

Address

Move to DDRAM

Address

Command

(in Binary) Description

Clear the entire display and move the

cursor home (Address 0)

Move the cursor home and return the

display to home position

Set the cursor (M: 0=left, 1=right) and

display scrolling (S: 0=no scrolling,

1=scroll)

Set the cursor direction to the right,

without a display shift

Shift the display or the cursor

(C: 0=cursor, 1=display) to the left or to

the right (M: 0=left, 1=right)

Set the bus size (B: 0=4bits, 1=8 bits),

number of lines (L: 0=1 line, 1=2 lines)

and font size (F: 0=5x8, 1=5x10)

Move the pointer to character RAM

location specified by Address (A)

Move the cursor to display RAM

location specified by Address (A)

7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 1 M S

0 0 0 0 1 D U B

0 0 0 1 C M 0 0

0 0 1 B L F 0 0

0 1 A A A A A A

1 A A A A A A A

Chapter 6 Command Set

1 6 4

The following figure shows the most common DDRAM mapping, which you need to

know for detailed operation.

Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

17

81

18

82

19

83

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

Line 1:

Line 2:

Line 3:

Line 4:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 39

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 103

Line 1:

Line 2:

On-screen positions* Off-screen positions*

*Assuming the display in the home position.

Figure 6-9 DDRAM Mapping of 2X16 and 4X20 Display

Sub main()

Dim I, DataIn As Byte

Dim MyString(8) As Byte = Hi There!

PAUSE 1000 allow LCD to self-initialize first

LCDCMD 1, 32 set data bus to 4-bit mode

LCDCMD 1, 40 set to 2-line mode with 5x8 font

LCDCMD 1, 15 display on with blinking cursor

LCDCMD 1, 6 auto-increment cursor

LCDCMD 1, 1 clear display

Chapter 6 Command Set

1 6 5

For I=0 To 8

LCDOUT 1, &H80+I, [MyString(I)] display Hi There!

Next

Debug Read from LCD :

For I=0 To 8

LCDIN 1,&H80+I, [DataIn] &H80, DDRAM address of Line 1

Debug %CHR DataIn

Next

End Sub

Chapter 6 Command Set

1 6 6

LCDIN

Syntax
LCDIN Pin, Command, [DataIn]

Operation
Receive data from an LCD Module.

Pin a constant or variable (1, 9 or 17) that specifies the first pin of seven

contiguous pins where the LCD Module is connected. 1 stands for Pin 1 to Pin 7,

9 stands for Pin 9 to 15 and 17 stands for Pin 17 to 23. For the 24-pin BASIC

Commander®, the Pin value will be 1 and 9 only.

Command a const or variable (0~255) that specifies the LCD command to

send.

DataIn a list of variables that receive the incoming data.

Description
The three LCD commands (LCDCMD, LCDIN and LCDOUT) allow the BASIC

Commander® to interface directly to a standard LCD display that employs a Hitachi

44780 or compatible LCD controller. The LCDIN command is used to send one

instruction and then receive at least one data byte from the LCD's Character Generator

RAM or Display Data RAM. Please refer to the LCDCMD section for more detailed

interfacing and wiring information.

When the LCD is first powered-up, it defaults to an 8-bit interface and must be

configured as a 4-bit bus before sending commands. This process is known as

initializing the LCD and is the first thing your program should do upon starting up.

Please refer to LCDCMD section for more detailed LCD initialization information.

The LCDIN command is used to receive ASCII character values, decimal,

hexadecimal and binary translations and string data from the LCD's Character

Generator RAM or Display Data RAM.

Chapter 6 Command Set

1 6 7

Example
Refer to the LCDCMD command for the usage.

Chapter 6 Command Set

1 6 8

LCDOUT

Syntax
LCDOUT Pin, Command, [DataOut]

Operation
Send data to an LCD Module.

Pin a constant or variable (1, 9 or 17) that specifies the first pin of 7

contiguous pins where the LCD Module is connected. 1 stands for Pin 1 to Pin 7,

9 stands for Pin 9 to 15 and 17 stands for Pin 17 to 23. For the 24-pin BASIC

Commander®, the Pin value will be 1 and 9 only.

Command a const or variable (0~255) that specifies the LCD command to

send. Usually, it is the Character RAM address plus an offset of 64 or the Display

RAM address plus and offset of 128, to where the ASCII code is sent.

DataOut a list of const or variables that carry the data to be displayed.

Description
The three LCD commands (LCDCMD, LCDIN and LCDOUT) allow the BASIC

Commander® to interface directly to a standard LCD display that employs a Hitachi

44780 or compatible LCD controller. The LCDIN command is used to send one

instruction and then receive at least one data byte from the LCD's Character Generator

RAM or Display Data RAM. Refer to the LCDCMD section for more detailed

interfacing and wiring information.

When the LCD is first powered-up, it defaults to an 8-bit interface and must be

configured as a 4-bit bus before sending commands. This process is known as

initializing the LCD and is the first thing your program should do upon starting up.

Refer to LCDCMD section for more detailed LCD initialization information.

The LCDOUT command is used to send one instruction followed by at least one data

byte to the LCD. The data that is output is written to the LCD's Character Generator

RAM or Display Data RAM.

Chapter 6 Command Set

1 6 9

Example
Refer to the LCDCMD command for usage.

Chapter 6 Command Set

1 7 0

LEFT

Syntax
LEFT(TargetString, length)

Operation
Retains the leftmost length letters of the specified string TargetSring with other letters

truncated.

TargetString the string operand of the LEFT function.

Length a const or variable that specifies the length of the string to be kept.

Description
The LEFT command retains the leftmost letters specified by the Length and truncates

the remaining letters of the string. If the specified length is longer than the size of the

target string, the extra length will be ignored and the string remains unchanged.

Example

Sub main()

Dim MyString As String * 12

MyString = Hello World!

LEFT(MyString, 5)

Debug Leftmost 5 letters: , MyString, CR

MyString = Hello World!

RIGHT(MyString, 5)

Debug Rightmost 5 letters of MyString: , MyString, CR

Chapter 6 Command Set

1 7 1

MyString = Hello World!

MID(MyString, 3, 5)

Debug Middle 5 letters from the third letter ", MyString, CR

End Sub

Chapter 6 Command Set

1 7 2

LEN

Syntax
Length = LEN(StringVar)

Operation
To return the length of a string.

StringVar the string operand of the LEN function.

Length a variable that receives the length of the given string.

Description
The LEN command returns the length of a string. For an empty string, which contains

no ASCII characters, the length is 0. The maximum length of a string is the size it

declares.

Example

Sub main()

Dim MyString As String * 12

Dim Length As Byte

MyString =

Length =LEN(MyString)

Debug Length of a null string is , Length, CR

MyString = Hello!

Length = LEN(MyString)

Debug Length of MyString is , Length, CR

End Sub

Chapter 6 Command Set

1 7 3

LOG

Syntax
Result = LOG(Argument)

Operation
To return the natural logarithm value of a floating-point argument.

Argument the floating-point operand of the LOG function.

Result a floating-point variable that receives the result of the LOG function.

Description
The LOG function returns the natural logarithm value of a floating-point argument. In

mathematics, it is denoted as y = ln(x). Its inverse function is the natural exponent

EXP function.

Example

Sub main()

Dim Result As Float

Result = LOG(2.7183)

Debug LOG of 2.7183 is , Result, CR

Result = LOG(7.3891)

Debug LOG of 7.3891 is , Result, CR

End Sub

Chapter 6 Command Set

1 7 4

LOG10

Syntax
Result = LOG10 (Argument)

Operation
To return the base 10 exponent value of a floating-point argument.

Argument the floating-point operand of the LOG10 function.

Result a floating-point variable that receives the result of the LOG10 function.

Description
The LOG10 function returns the base 10 logarithm value of a floating-point argument.

The Argument is always a positive value. In mathematics, it is denoted as y = log(x).

Its inverse function is the base 10 exponent EXP10 function.

Example

Sub main()

Dim Result As Float

Result = LOG10(10.0)

Debug LOG10 of 10.0 is , Result, CR

Result = LOG10(100.0)

Debug LOG10 of 100.0 is , Result, CR

End Sub

Chapter 6 Command Set

1 7 5

LONG2FLOAT

Syntax
Result = LONG2FLOAT(Argument)

Operation
To convert a Long value into its floating-point format.

Argument the Long operand of the LONG2FLOAT function.

Result a floating-point variable that receives the result of the LONG2FLOAT

function.

Description
The LONG2FLOAT command converts a Long value into its floating-point format.

The floating-point result will be an integral value ranging from +2147483647 to -

2147483648. Due to the single precision floating point employed, a LONG variable

may not be represented precisely. The nearest integral floating point value will be

returned instead. When using this command in your application program, care must

therefore be taken.

You can tell whether a LONG value can be represented precisely by examining

the number of bits in its binary format. Excluding the leading and trailing 0's of its

binary format, if the number of remaining bits is greater than 24, then it cannot be

precisely represented.

Example
Due to the single precision floating point employed, the value of 2147483647 cannot

be represented precisely. The nearest value 2147483648 will be returned instead.

Chapter 6 Command Set

1 7 6

Sub main()

Dim MyLong As Long

Dim MyFloat As Float

MyLong = -2147483648

MyFloat = LONG2FLOAT(MyLong) the result is -2147483000

Debug LONG2FLOAT of -2147483648 : , MyFloat, CR

MyLong = 2147483647

MyFloat = LONG2FLOAT(MyLong) the result is 2147484000

Debug LONG2FLOAT of 2147483647 : , MyFloat, CR

End Sub

Chapter 6 Command Set

1 7 7

LOW

Syntax
LOW Pin

Operation
Sets the specified pin to a logic low level

Pin a constant or variable (0~23) that specifies the pin that the low level is to

be applied to. For the 24-pin BASIC Commander®, the Pin value ranges from

0~15.

Description
This command will set the specified pin to a low level close to 0 volts. Usually, a pin

must be changed to an input or output mode in advance to execute the corresponding

input or output operations. However as only one pin is involved in a LOW instruction

operation, the pin will be changed to the output mode automatically by the system. It

is not necessary for the user to change the mode manually by executing an OUTPUT

command beforehand. Refer to the HIGH command for other related information.

Example
Refer to the HIGH command for usage.

Chapter 6 Command Set

1 7 8

MID

Syntax
MID(TargetString, Start, Length)

Operation
Remains the middle Length letters starting from Start position of the specified string

TargetSring with other letters truncated.

TargetString the string operand of the MID function.

Start a const or variable that specifies the starting position of a string

Length a const or variable that specifies the length of the string to be copied.

Description
The MID command remains the middle Length letters starting from Start position of

the specified string. If Start is greater than the number of characters in the target

string, the string will become a null string. If the specified length is longer than the

remaining size of the target string counting from position Start, the extra length will

be ignored.

Example
Refer to the LEFT command for usage

Chapter 6 Command Set

1 7 9

OUTPUT

Syntax
OUTPUT Pin

Operation
Configures the specified Pin to the output mode.

Pin a constant or variable (0~23) that specifies which pin will be set to the

output mode. For the 24-pin BASIC Commander®, the Pin value ranges from

0~15.

Description
If you want to send a digital signal to the outside world, the pin that is used to send the

signal should be changed to an output mode beforehand. Due to the simplicity of the

pin-related input output command, the mode change is executed automatically by the

system. The user need only simply use the input output commands without being

concerned about the direction of the pins in question. However, this OUTPUT

command is still provided and note that if you use the OUTPUT command to change

a pin from an input mode to an output mode, the last write for the high/low state will

ensure that there is no electrical conflicts on the pin that may cause damage.

Example
Refer to the INPUT command for usage.

Chapter 6 Command Set

1 8 0

PAUSE

Syntax
PAUSE Duration

Operation
This command will force the program to wait for the time specified.

Duration a variable or a constant that specifies the number of times and the

duration for which the pause is active. The duration unit is 1 millisecond.

Description
This command will insert a delay between the previous statement and the next

statement. Using a PAUSE command gives the user some control over the program

execution speed by allowing delays to be inserted at any point in the program. The

duration unit is 1 millisecond.

Example
The following program demonstrates how to make an LED flash with different pause

time.

Chapter 6 Command Set

1 8 1

P0

330 ohm

R1

Vdd

LED1

Figure 6-10 LED Flasher circuit

Sub main()

Dim Period As Word

START:

Debugin Set pause (0~65535 ms) between LED ON/OFF. , Period, CR

Do

HIGH 0

Pause(Period)

LOW 0

Pause(Period)

Loop

End Sub

Chapter 6 Command Set

1 8 2

PERIPHERAL

Syntax
PERIPHERAL Name AS TypeName @ ID

Operation
Declare a peripheral module.

Name a name declared by user, similar to a variable name.

TypeName one of the peripheral module types, conceptually similar to a data

type.

ID a const (0~31) that indicates the peripheral ID set by the DIP switch on the

peripheral module.

Description
This command is used to declare a peripheral module by giving it a unique module

name and a TypeName to specify what kind of module it is. The ID is a unique

address through which all the modules attached to the cmdBUS™ can be addressed

individually. The TypeNname belongs to an ever-growing list of Innovati® developed

modules, where all newly-developed modules will be assigned a new type name. The

Peripheral Module should be declared outside of all procedures. In other words, the

Peripheral Modules act like a global variable, and can therefore be recognized from

any place within the whole program.

Not like other commands, the Peripheral command is associated with the

Peripheral Module Hardware. The documents accompanying the module hardware,

will supply the module type name and associated dedicated functions will be

provided. Note that more than one identical module can be connected to the

cmdBUS™, if required, as long as they are assigned with different IDs.

Chapter 6 Command Set

1 8 3

Example
The following program demonstrates how to declare and give commands to the

peripheral modules.

Peripheral myLCD As LCD2x16a @ 0 a 2x16 LCD module with ID 0

Sub main()

myLCD.Display(Hi There!)

End Sub

Chapter 6 Command Set

1 8 4

PULSEIN

Syntax
PULSEIN Pin, State, Variable

Operation
This command will measure the pulse width of a pulse that appears on the specified

pin.

Pin a constant or variable (0~23) that specifies the pin where the pulse width

is to be measured. For the 24-pin BASIC Commander®, the Pin value ranges

from 0~15.

State a constant or variable (0~1) that specifies whether the pulse is a positive

or negative pulse. If a (0) is written here, then a negative pulse will be measured

and if a (1) is written, then a positive pulse will be measured.

Variable a variable of WORD type where the measured pulse width value will

be placed. The unit of measurement is of 5 s. If the pulse measured is longer

than the maximum of 65535 units or the pulse does not appear, a value of 0 will

be returned, which indicates an invalid measurement.

Description
This command is used to measure the width of a pulse presented on a specified pin. It

is useful in cases where pulse widths are used by some external hardware to express

an external measurement. An example of this might be some external ICs which

measure temperature, pressure etc, but whose output is expressed as a pulse width

rather than a voltage. Such ICs could interface directly to the BASIC Commander®

and the PULSEIN command used to measure the IC output. The pulse to be measured

can be either a high pulse or a low pulse. It must be noted that when the command is

executed, it will start to measure the pulse width when it receives the first pulse edge.

This will be a high going edge for a high pulse, with State variable set to 1 or a low

going edge for a low pulse, with State variable set to 0. The units measured will be 5

Chapter 6 Command Set

1 8 5

Vss

4.7 K

P0

Vdd

Figure 6-11 Measuring a Pulse Width on P0

s. If the pulse measured is longer than the maximum of 65535 units, it overflows to

0. However, the system will only wait for a specified time for this first edge to appear.

If it does not appear then a zero value will be loaded into Variable and the program

will continue and execute the next command. This prevents the program from hanging

up at this command in the event of no pulse appearing. When the PULSEIN

completes the measurement, either successfully or nor, the program will continue and

execute the next command.

Example
The following example shows how to use the PULSEIN command to measure an

external low pulse period.

Chapter 6 Command Set

1 8 6

Sub main()

Dim Result As Word

Do

Debug Press the key. , CR

wait:

Pulsein 0,0,Result measure low pulse on P0

If Result=0 Then Goto wait not pressed or longer than 327 ms

Result\=200 convert 5us unit to 1ms unit

Debug The key pressed for , Result, ms. ,CR

Loop

End Sub

Chapter 6 Command Set

1 8 7

PULSEOUT

Syntax
PULSEOUT Pin, Duration

Operation
This command will generate a pulse that appears on the specified pin.

Pin a constant or variable (0~23) that specifies the pin where the pulse will be

generated. For the 24-pin BASIC Commander®, the Pin value ranges from 0~15.

Duration a constant or variable (0~65535) that specifies the length of the

pulse width. The unit of measurement is 5 s.

Description
The PULSEOUT command will generate a pulse of user specified width on a

specified pin. The type of pulse is dependent upon the high low status of the pin that

the pulse is to be generated on. If the pin is in a low state when the PULSEOUT

command is executed, then a high pulse will be generated and if the pin is in a high

state, then a low pulse will be generated.

Example
The following program shows how to use the PULSEOUT command to drive a servo.

The servo position is usually controlled by a 0.5 ms to 2.5 ms high pulse within each

20 ms period. In this program we set two positions of 1 ms and 2 ms. The servo will

rotate back and forth every 4 seconds. Connect the power and ground to the servo

power and ground lines and P0 to the servo control line.

Chapter 6 Command Set

1 8 8

Sub main()

Dim b As Byte

Low 0 initialize Pin 0 to low to have a high pulse

Do

For b=0 To 100 2 seconds servo rotation

PULSEOUT 0,200 move to position of 1ms pulse width

Pause 19 constitute a 20 ms cycle

Next

For b=0 To 100 2 seconds servo rotation

PULSEOUT 0,400 move to position of 2ms pulse width

Pause 18 constitute a 20 ms cycle

Next

Loop

End Sub

Chapter 6 Command Set

1 8 9

PWM

Syntax
PWM Pin, Duty, Cycles

Operation
This command will generate an output in pulse-width modulation format.

Pin a constant or variable (0~23) that specifies the pin where the pulse width

modulation signal is to be generated. This pin will be set to output mode initially

then set to the input mode after the command has executed. For the 24-pin

BASIC Commander®, the Pin value ranges from 0~15.

Duty a constant or variable (0~255) that specifies the duty cycle of the output

waveform.

Cycles specifies the number of cycles (about 1.15 ms per cycle) for which the

PWM output will be generated which in turn is actually specifying the amount of

time for which the PWM output will operate. Specifying a zero value will not

generate any PWM signal output. Its value can be a constant, variable or an

expression and must have a range between 0 and 255.

Description
The PWM command allows the BASIC Commander® to generate an analogue voltage

output on its digital pins. When you set an output pin high, the voltage of the pin will

be close to 5V and set an output pin low, the voltage of the pin will be close to 0V. If

you switch the pin rapidly between high and low, then you will get a voltage of the pin

in between. The actual voltage that you can get depends on the time ratio of high to

low, which is called the duty cycle. For example, if the Duty is 150, (150/255) 5V =

2.94V, the PWM command outputs a train of pulses whose average voltage is 2.94V.

The PWM command has a fixed period of 1.15 ms as shown in the following figure.

Chapter 6 Command Set

1 9 0

The following low pass resistor/capacitor circuitry filters out the pulses and

maintains the analogue voltage after the command has finished. The analogue voltage

that will be held depends on how much current is drawn from it by external circuitry,

including the capacitor current leakage. In order to hold the voltage, a periodical

PWM command execution to charge the resistor/capacitor circuit is needed.

It takes time to charge a capacitor to the desired voltage in the beginning. You

may use the rule of thumb formula: Charge time = 5 R C, to estimate at least how

many cycles should be given for charging. For instance, computation of the charge

time is shown in the following formula.

Charge time = 5 10 103 1 10-6 = 50 10-3 seconds, or 50 ms.

For the BASIC Commander®, each cycle is about a 1.15 ms, it would therefore take at

least 44 cycles to charge the capacitor. Assuming Pin 0 is used, then the command

will be:

Vss

+

10 K

Analog VoltageP0

60% Duty 40% Duty

PWM Cycle
(1.15ms)

Figure 6-12 PWM Waveform with 60% Duty Cycle

Figure 6-13 Adding a Low Pass Filter circuit to the PWM output

Chapter 6 Command Set

1 9 1

Example

PWM 0, 150, 44 charge to 2.94 V, on Pin 0

Sub main()

Dim f As Float

Dim duty As Byte

Dim b As Byte

Start:

Debugin Enter desired voltage(0~5V) : ,f,CR

If f<0 Or f>5 Then

Debug Invalid value. ,CR

Goto Start

Else

f=f*255/5

duty=float2byte(f)

Debug duty= ,duty,CR

For b=1 to 100 Hold the voltage for 5 seconds

PWM(0,duty,44)

Next b

End If

Goto Start

End Sub

Chapter 6 Command Set

1 9 2

RANDOM

Syntax
RANDOM Variable

Operation
This command will generate a random number.

Variable the generated random number will be placed in this previously

defined variable

Description
This command will generate pseudo-random number and place it in the defined

variable. Pseudo-random means that the number is not strictly random as a sequence

will be formed which will repeat itself after a period of time. However this method of

random number generation is usually suitable for most application purposes. To

generate a true random number some other externally controlled event must be

factored into the number generation. The random number sequence will also depend

upon the initial number chosen to initiate generation. This can be controlled by setting

up an initial value for the variable. This value will then be taken as the basis for the

random number generation. This is known as the random number generation seed

value.

Example
The following program demonstrates how to combine an external push button and

RANDOM command to make your own lottery number generator.

Chapter 6 Command Set

1 9 3

Vss

10 K

P0
220

Vdd

PB Switch

Figure 6-14 Generating Random Numbers with Push Button & RANDOM command

Sub main()

Dim Key As Byte

Dim Seed As Dword =10

Dim X,Y As Byte

Dim Temp As Dword

Dim NumArray(5) As Dword

Do

Debug Press push button to get your lucky numbers. , CR

Wait:

RANDOM(Seed)

If IN(0)<>0 Then Goto Wait

Debug The lucky numbers are

For Y=0 To 5

GenRandom:

RANDOM(Seed)

Temp = Seed Mod 47

Temp += 1

For X = 0 To 5

If Temp = NumArray(X) And X <> Y Then

Chapter 6 Command Set

1 9 4

Goto GenRandom

End If

Next

NumArray(Y) = Temp

Debug NumArray(Y),

Next

Debug CR

Loop

End Sub

Chapter 6 Command Set

1 9 5

RCTIME

Syntax
RCTIME Pin, State, Variable

Operation
Measure the charge/discharge time of resistor/capacitor (RC) circuit.

Pin a constant or variable ranging from 0 to 23 that specifies the I/O pin to

use. This pin will be configured as input mode. For the 24-pin BASIC

Commander®, the Pin value ranges from 0~15.

State a constant or variable of 0 or 1 to specify the desired measure state.

Once Pin is not in State, the command ends and stores the result in Variable.

Variable a variable, usually a word, in which the time measurement will be

stored. The unit is 5 s.

Description
The digital I/Os can not measure the analog signal. However, we can connect the

analog signal into an RC charging/discharging circuit and by measuring the RC

charging/discharging time, we can calculate the resistance or capacitance, which

represents the analog signal.

There are two kinds of circuit, as shown in the following figures that can be used

for this command. Both of them have the same voltage span 0.7VDD, meaning from

high to low the state changes at 0.3VDD and from low to high, the state changes at

0.7VDD.

Chapter 6 Command Set

1 9 6

Prior to the execution of RCTIME command, the capacitor must be charged if

you want to measure the discharging time with the State variable set to 1. Otherwise,

the capacitor must be discharged if you want to measure the charging time with the

State variable set to 0. When the command is executed, the I/O pin will be configured

as input mode, and an internal timer is started to measure then the discharging or

charging time. Once discharging reaches 0.3VDD threshold or charging reaches

0.7VDD threshold, the I/O input changes state and the timer is stopped with counter

value stored in variable.

To obtain the capacitance or resistance value, we should calculate the RC time

constant, or tau () for short. The RC time is the multiplication of capacitance and

resistance value, which is the time required for charging or discharging 63% of the

initial voltage. The general formula for charging or discharging from the initial

voltage to the final voltage is expressed as below.

time = - x (ln(Vfinal/Vinitial))

Pin

C R

Vss

220

Pin

C

R

Vss

Vdd

220

To measure discharging time, State = 1 To measure charging time, State = 0

Figure 6-15 Circuits needed for RCTIME command

Chapter 6 Command Set

1 9 7

The Vfinal/Vinitial is fixed as 0.3 and take a 0.1 F capacitor and 10k resistor for

instance, the estimated time will be:

time = 9.163 10-4

As the timer counting unit is 5 s, the estimated time is about 183 counts. We

can calculate the R or C value from the formula.

Hence, we can use the rule of thumb to calculate the R or C value in question.

counts = 183 R (in k) C (in F)

Before RCTIME executes, the capacitor must be charged to 5V for State 1 or

discharged to 0V for State 0. You may use the rule of thumb formula to estimate at

least how much time should be given for charging.

Charge time = 5

For instance, assuming the capacitor is 0.1uF and the resistor is 220 , as

depicted in the figure, the charging time should be at least:

Charge time = 5 220 0.1 10-6 = 0.11 ms.

Example
The following program demonstrates how to use the RCTIME command to measure

and display the resistance value of an externally connected potentiometer, which is

connected to Pin 0 via an RC circuit as shown above.

Chapter 6 Command Set

1 9 8

Sub main()

Dim result As Word

Dim resultf As Float

Do

High 0

Pause 1

RCTIME 0,1,result

resultf=Word2float(result)

resultf=resultf/183*10

Debug The potentiometer value (K) : , resultf, CR

Loop

End Sub

Chapter 6 Command Set

1 9 9

READPORT

Syntax
Result = READPORT Port

If the port number is a constant, you may also use one of the following format types

instead.

Result = READPORT0

Result = READPORT1

Result = READPORT2

Operation
To read the specified I/O port.

Port a constant or variable (0 ~2) that specifies the port number. Port 0

consists of pin P0~P7, while Port 1 consists of pin P8~P15, and Port2 consists of

pin P16~P23. For the 24-pin BASIC Commander®, the Port value is 0 or 1.

Result a Byte variable to receive the external logic level on Port.

Description
The READPORT command is used to read digital signals from the outside world.

Unlike the IN command, the I/O mode of the pin will not be changed to the input

mode automatically. For the READPORT command, there are eight pins involved and

each pin may be set to the input or output mode. You have to configure each bit

explicitly. For pins which with smaller index are of the lower bit order of a data byte.

Note that when the I/O pins are configured in the input mode, it is recommended that

an external 10 K pull-high resistor for each I/O pin is connected. Otherwise due to

the high impedance floating state of these pins, the I/O pin could be randomly read as

either a 1 or 0 which would not reflect the true condition of the digital signal on the

pin

Chapter 6 Command Set

2 0 0

For those pins that are set in the output mode, reading data from those pins will

not read the actual status of the I/O pin, as only the data previously written to the

output pin is read.

Example
Connect the eight I/O pins of Port 1 as inputs and the eight pins of Port 0 as outputs as

shown below. The push button status will be shown on the LEDs.

10 K

220

Vss

Vdd
Vdd

Pins of Port 0

Pins of Port 1

330 ohm

R1

LED1

PB Switch

Figure 6-16 Port 1 I/O pins as inputs connected to Port 0 pins as outputs

Sub main()

Dim IOStatus as Byte

SETDIRPORT1(&B11111111) set Port 1 as input

SETDIRPORT0(&B00000000) set Port 0 as output

Do

IOStatus=READPORT1()

WRITEPORT0(IOStatus)

Loop

End Sub

Chapter 6 Command Set

2 0 1

RESETMODULE

Syntax
RESETMODULE

Operation
Rest all the peripheral modules that connected to the cmdBUS™.

Description
This command is used to reset all the modules that connected to the cmdBUS. Usually

this command is employed when the BASIC Commander® fails to communicate with

the peripheral module(s) due to the unpredictable peripheral module failures. Note

that this command pulls low the SYN line of the cmdBUS™, even the normal

operating modules will be forced to restart, too.

Chapter 6 Command Set

2 0 2

RETURN

Syntax
RETURN {ReturnValue}

Operation
Returns from a Sub, Function or Event. If returning from a Function, a ReturnValue

must be provided.

ReturnValue optional return value which may appear only in the Function

body.

Description
The Sub, Function or Event body will end when the END SUB, END FUNCTION or

END EVENT is encountered respectively. However, if returns are required under

other situations, the RETURN command can be used. The ReturnValue is only used in

the Function body to pass the result of the executed function. If the RETURN

command is encountered before any Sub, Function or Event is invoked, it will result

in a branch to the end of the main program.

Example

Function Max(Z1 As Integer, Z2 As Integer) As Integer

If Z1>Z2 Then

Return Z1

Else

Return Z2

End If

End Function

Sub main()

Chapter 6 Command Set

2 0 3

Dim X, Y As Integer

Debugin Enter X = ,X

Debug X,CR

Debugin Enter Y = ,Y

Debug Y,CR

Debug Max(X,Y)= , Max(X,Y), CR

End Sub

Chapter 6 Command Set

2 0 4

REVERSE

Syntax
REVERSE Pin

Operation
Reverses the specified pin's direction whether in the input or output mode.

Pin a constant or variable (0~23) that specifies which pin will be set to the

opposite mode of either input or output mode. For the 24-pin BASIC

Commander®, the Pin value ranges from 0~15.

Description
If you want to read or write a digital signal from or to the outside world, the pins must

be changed to the corresponding mode beforehand. Due to the simplicity of the pin-

related input output command, the mode change job is automatically executed by the

system. This is done by simply using the input output commands without worrying

about the direction of the pins in question. In addition to the INPUT and OUTPUT

command, the REVERSE command is also provided, which reverses the current input

or output mode. Caution must be taken with your application circuit to prevent error

paths that may result due to unexpected input output direction changes causing

damage to your external circuit. Please check the INPUT and OUTPUT command to

see the notes and examples on using them.

Example
The following example changes the I/O directions of P0, which connects an LED

through a resistor. The LED will turn on/off accordingly.

Chapter 6 Command Set

2 0 5

P0

330 ohm

R1

Vdd

LED1

Figure 6-17 Input/Output Circuit

Sub main()

Dim key As Byte

Start:

WRITEPORT0 & H00 Write low to output buffers

Do

Debugin Input any key to toggle LED On/Off. , %CHR key, CR

REVERSE 0 Switch P0 to OUTPUT mode, turn On LED0

Loop

End Sub

Chapter 6 Command Set

2 0 6

RIGHT

Syntax
RIGHT(TargetString, length)

Operation
Retains the rightmost length of letters of the specified string TargetSring with other

letters truncated.

TargetString the string operand of the RIGHT function.

Length a variable that specifies the length of the string to be kept.

Description
The RIGHT command retains the rightmost letters specified by the Length and

truncates the rest of the letters of the string. If the specified length is longer than the

size of the target string, the extra length will be ignored and the string remains

unchanged.

Example
Refer to the LEFT command for usage.

Chapter 6 Command Set

2 0 7

Chapter 6 Command Set

SELECT... CASE

Syntax
SELECT {CASE} Expression

{ CASE Const

Statements}

{ CASE ELSE

Statements }

END SELECT

Operation
The SELECT command executes commands based on the value of an expression.

Expression a variable, a constant, or an expression.

Const a constant to be compared to Expression, if it is the same, the

commands in this CASE will be executed.

Statements any valid innoBASIC™ statement.

Description
The SELECT command is an advanced decision-making structure using the

compound IF...THEN...ELSE structure to execute one of several possible actions

based on the value of a single expression. When a SELECT command is executed,

the SELECT expression is evaluated first, and then compares it with the CASE

constant in the textual declaration order. If the first CASE constant meets the

evaluated value then its related instruction block will be executed. If the no CASE

constant meets the evaluated value and there is a CASE ELSE command, that

block will be executed. Once a block has finished executing, execution passes to

the END SELECT command. The EXIT SELECT command may be placed in the

loop body, which exits the current loop immediately before the loop limit test is

executed. Note that the optional CASE can come after the SELECT to support the

conventional command format.

Chapter 6 Command Set

2 0 8

Example
Refer to Chapter 5 for further detailed examples.

Chapter 6 Command Set

2 0 9

SERIN

Syntax
SERIN Rpin, Baudmode, { Timeout, } [InputData] { ,Plabel } {,Tlabel }

Operation
To receive data from devices that use UART (Universal Asynchronous

Receiver/Transmitter) protocol.

Rpin a constant or variable value (0~23) to specify the pin that will be used as

RX pin. After the execution of the command, the specified pin will be configured

as an input pin. For a 24-pin BASIC Commander® , the range of the pin value is

0~15.

Baudmod a constant or variable value (0~65535) to specify the UART

configuration. Baudmod consists of four parts, namely the Baud Rate (bit 11~bit 0),

Parity Check (bit 13), Inverted Output (bit 14) and Driven mode (bit 15). Note that

bit 12 is unused. For Baud Rate, the value is given by using formula 4096-

(2000000\Baud Rate). Baud Rate value should be in the range of 500~80000 bps.

For Parity Check, bit 13 equals to 0 stands for 8bit/Non-parity and 1 stands for 7-

bit/Even-parity, which is equal to adding 8192 to the whole number in decimal. For

Inverted Output, bit 14 equals to 0 stands for non-inverted and 1 stands for inverted

output, which is equal to add 32768 to the whole number in decimal. For Driven

mode, bit 15 equals to 0 stands for driving both to High and Low and 1 stands for

Open, which is equal to add 32768 to the whole number in decimal. Note that, if

Open is configured, in Non-inverted mode, a pull-up resistor is needed and in

Inverted mode, a pull-low resistor is needed.

Timeout a constant or variable value (0~65535) to specify the maximum

waiting time (unit 1ms) for incoming data.

InputData a list of variables to store received data. The data is available in

following formats:

Chapter 6 Command Set

2 1 0

PLabel a label that specifies where to branch if a Parity Check error occurs.

TLabel a label that specifies where to branch if a Waiting Timeout error

occurs

Description
SERIN command is used to receive data from devices that use standard UART

protocol. Note that this is a software simulated command, for high speed UART

applications, please check the transmission speed limitation.

Chapter 6 Command Set

Value{|L}

String{|L}

Array{|L}

%Skip Value

Value is a 1~4 bytes variable, while L is an optional constant or variable

ranging 0~255 specifying the number of bytes, starting from low byte, to be

received and stored in the variable. If L is greater than the length of Value,

or is equal to 0, the whole bytes of Value will be received and stored in the

variable.

String is a string variable, while L is an optional constant or variable

ranging 0~255 specifying the number characters to be received and stored

in the string. If L is greater than the length of String, or is equal to 0, the

whole String will be received and stored in the string.

Array is a variable array, while L is an optional constant or variable ranging

0~255 specifying the number of elements, starting from index number 0, to

be received and stored. If L is greater than the size of Array, or is equal to

0, the whole Array will be received and stored.

Value is a 1-byte constant or variable ranging 0~255 specifying the number

of data bytes to be skipped from current data receiving.

Chapter 6 Command Set

2 1 1

Chapter 6 Command Set

Sub main()

Dim Rpin as Byte

Dim Baudmode as Word

Dim Timeout as Word

Dim Value1 as byte

Dim Value2 as Word

Dim Value4 as DWord

Dim MyString as String*20

Dim MyArray(9) as byte

Dim L1 as byte

Dim L2 as byte

#Define BaudRate 38400 Baud Rate

#Define ParityCheck 8192 with Parity Check

#Define Inverted 16384 Inverted Output

#Define Open 32768 Open Drain Output

Rpin=1 RX pin at pin 1

L1=2

L2=5

Timeout=100

Baudmode= (4096 (2000000\BaudRate)) + ParityCheck + Inverted

SERIN Rpin, Baudmode, [Value1] receive 1-byte data and store in variable

SERIN Rpin, Baudmode, [Value2] receive 2-byte data and store in variable

SERIN Rpin, Baudmode, [Value4] receive 4-byte variable data

SERIN Rpin, Baudmode, [Value4|L1] receive 2 bytes and store in variable

SERIN Rpin, Baudmode, [MyString] receive the whole string data

Example

Chapter 6 Command Set

2 1 2

Chapter 6 Command Set

SERIN Rpin, Baudmode, [MyString|L2] receive 5 characters string data

SERIN Rpin, Baudmode, [MyArray] receive the whole array data

SERIN Rpin, Baudmode, [MyArray |L2] receive 5 array data

SERIN Rpin, Baudmode, [%Skip Value1] skip 1 data byte

SERIN Rpin, Baudmode, [Value1, Value4, MyString|L2, MyArray, MyArray|L2]

receive and store multiple data

SERIN Rpin, Baudmode, [Value2], Parity_Error_Label

receive data with Parity Check error branch label

SERIN Rpin, Baudmode, Timeout, [Value2], Timeout_Label

receive data with receiving Timeout error branch label

SERIN Rpin, Baudmode, Timeout, [Value2], Parity_Error_Label, Timeout_Label

receive data with both Parity Check and timeout error branch labels

Debug Serial Input Complete! , CR

Do

Loop

Parity_Error_Label:

Debug Parity Check Error! ,CR

Do

Loop

Timeout_Label:

Debug Timeout! ,CR

Do

Loop

End sub

Chapter 6 Command Set

2 1 3

SEROUT

Syntax
SEROUT Tpin, Baudmode, {Delay,} [OutputData]

Operation
To transmit data to devices that use UART (Universal Asynchronous

Receiver/Transmitter) protocol.

Tpin a constant or variable value (0~23) to specify the pin that will be used as

TX pin. After the execution of the command, the specified pin will be configured

as an output pin. For a 24-pin BASIC Commander® , the range of the pin value is

0~15.

Baudmod a constant or variable value (0~65535) to specify the UART

configuration. Baudmod consists of four parts, namely the Baud Rate (bit

11~bit0), Parity Check (bit 13), Inverted Output (bit 14) and Driven mode (bit

15). Note that bit 12 is unused. For Baud Rate, the value is given by using

formula 4096-(2000000\Baud Rate). Baud Rate value should be in the range of

500~80000 bps. For Parity Check, bit 13 equals to 0 stands for 8bit/Non-parity

and 1 stands for 7-bit/Even-parity, which is equal to adding 8192 to the whole

number in decimal. For Inverted Output, bit 14 equals to 0 stands for non-

inverted and 1 stands for inverted output, which is equal to add 32768 to the

whole number in decimal. For Driven mode, bit 15 equals to 0 stands for driven

both to High and Low and 1 stands for Open, which is equal to add 32768 to the

whole number in decimal. Note that, if Open is configured, in Non-inverted

mode, a pull-up resistor is needed and in Inverted mode, a pull-low resistor is

needed.

Delay a constant or variable value ranging from 0 to 65535 to specify the

delay time (unit 1ms) before transmitting the next byte, which is useful when the

receiver requires a longer data processing time.

OutputData a list of constants or variables specifying the data to be sent. The

data is available in following formats::

Chapter 6 Command Set

2 1 4

Description
SEROUT command is used to transmit data to devices that accept standard UART

protocol. Note that this is a software simulated command, for high speed UART

applications, please check the transmission speed limitation.

Example

Sub main()

Dim Tpin as Byte

Dim Baudmode as Word

Dim Delay as Word

Dim Value1 as byte

Dim Value2 as Word

Dim Value4 as DWord

Value{|L}

String{|L}

Array{|L}

%Rep Value{|L}

TEXT

Value is a 1~4 bytes constant or variable, while L is constant or variable

ranging 0~255 specifying the number of bytes, starting from low byte, to be

transmitted. If L is greater than the length of Value, or is equal to 0, the

whole bytes of Value will be transmitted.

String is a string variable, while L is constant or variable ranging 0~255

specifying the number characters to be transmitted. If L is greater than the

length of String, or is equal to 0, the whole String will be transmitted.

Array is a variable array, while L is constant or variable ranging 0~255

specifying the number of elements, starting from index number 0, to be

transmitted. If L is greater than the size of Array, or is equal to 0, the whole

Array will be transmitted.

Value is a 1~4 bytes constant or variable, while L is constant or variable

ranging 0~255 specifying number of times the Value will be transmitted

repeatedly. If L is equal to 0, the Value will be transmitted once.

Text string, for instance Hello World!

Chapter 6 Command Set

2 1 5

Dim MyString as String*20

Dim MyArray(9) as byte = {0,1,2,3,4,5,6,7,8,9}

Dim L1 as byte

Dim L2 as byte

#Define BaudRate 38400 Baud Rate

#Define ParityCheck 8192 with Parity Check

#Define Inverted 16384 Inverted Output

#Define Open 32768 Open Drain Output

Tpin=1 TX pin at pin 1

L1=2

L2=5

Pace=10

MyString= Hello World!

Baudmode= (4096 (2000000\BaudRate))+ Inverted+ Open

SEROUT Tpin, Baudmode, [Value1] send 1-byte variable data

SEROUT Tpin, Baudmode, [Value2] send 2-byte variable data

SEROUT Tpin, Baudmode, [Value4] send 4-byte variable data

SEROUT Tpin, Baudmode, [Value4|L1] send 2 bytes of a 4-byte variable

SEROUT Tpin, Baudmode, [MyString] send Hello World! text string

SEROUT Tpin, Baudmode, [MyString|L2] send Hello of the string

SEROUT Tpin, Baudmode, [MyArray] send {0,1,2,3,4,5,6,7,8,9}

SEROUT Tpin, Baudmode, [MyArray |L2] send {0,1,2,3,4}

SEROUT Tpin, Baudmode, [%Rep Value1|L1] send Value1 data twice

SEROUT Tpin, Baudmode, [Hello World!] send Hello World! text string

SEROUT Tpin, Baudmode, [1234] send 1234 (2 bytes)

send multiple data

SEROUT Tpin, Baudmode, [Value1, Value4, MyString|L2, MyArray, MyArray|L2]

Chapter 6 Command Set

2 1 6

send data with 10ms interval between each byte

SEROUT Tpin, Baudmode, Delay, [%Rep Value1|L1, Hello World! ,1234]

End sub

Chapter 6 Command Set

2 1 7

SETDIRPORT

Syntax
SETDIRPORT Port, Dir

If the port number is a constant, you may also use one of the following format types

instead.

SETDIRPORT0 Dir

SETDIRPORT1 Dir

SETDIRPORT2 Dir

Operation
To set the I/O direction settings of the specified port.

Port a constant or variable (0 ~2) that specifies the port number. Port 0

consists of pins P0~P7, while Port 1 consists of pins P8~P15, and Port 2 consists

of pins P16~P23. For the 24-pin BASIC Commander®, the Port value is 0 or 1.

Dir a byte specifies the I/O directions. Each bit of the data byte specifies the

direction of each pin, 0 is output and 1 is input.

Description
If you want to read digital signals from the outside world by using the READPORT

command, the corresponding pins must be first configured to the input mode. The

SETDIRPORT command is used to configure the I/O direction settings of the

specified port. Each pin of a port can be configured independently. Data 0 stands for

output and 1 stands for input mode. For pins which with smaller index are of the

lower bit order of a data byte. For example, the P0 setting will appear in Bit 0 of the

data read. The I/O directions default to input after the program starts.

Chapter 6 Command Set

2 1 8

Note that when the I/O pins are configured to be in the input mode, it is

recommended that an external 10K pull-high resistor is connected to each I/O pin.

Otherwise due to the high impedance floating state, the I/O pin may be randomly read

as 1 or 0, which does not reflect the actual signal value on the pin.

Example
Refer to the GETDIRPORT command for usage.

Chapter 6 Command Set

2 1 9

SGN

Syntax
Result = SGN(Argument)

Operation
To return the sign value of a floating-point value.

Argument the floating-point operand of the SGN function.

Result a SHORT variable that receives the result of the SGN function.

Description
The SGN command returns the sign value of a floating-point value. If the floating-

point value is positive then 1 is returned; If the floating-point value is negative then -1

is returned; If the floating-point value is of value 0 then 0 is returned.

Example

Sub main()

Dim Result As Short

Result = SGN(-0.1)

Debug SGN(-0.1) = , Result, CR

Result = SGN(0)

Debug SGN(0) = , Result, CR

Result = SGN(0.1)

Debug SGN(0.1) = , Result, CR

End Sub

Chapter 6 Command Set

2 2 0

SHORT2FLOAT

Syntax
Result = SHORT2FLOAT(Argument)

Operation
To convert a SHORT value into its floating-point format.

Argument the SHORT operand of the SHORT2FLOAT function.

Result a floating-point variable that receives the result of the BYTE2FLOAT

function.

Description
The SHORT2FLOAT command converts a SHORT value into its floating-point

format. The floating-point result will be an integral value ranging from -128.0 to

+127.0.

Example

Sub main()

Dim MyShort As Short

Dim MyFloat As Float

MyShort = -128

MyFloat = SHORT2FLOAT(MyShort) MyFloat has the value -128.0

Debug SHORT2FLOAT of -128 : , MyFloat, CR

MyShort = 127

MyFloat = SHORT2FLOAT(MyShort) MyFloat has the value 127.0

Debug SHORT2FLOAT of 127 : , MyFloat, CR

End Sub

Chapter 6 Command Set

2 2 1

SIN

Syntax
Result = SIN(Argument)

Operation
To execute a mathematical sine function.

Argument the floating-point operand of the sine function with a range from 0

to 2

Result a floating-point variable to receive the result of the sine function.

Description
The SIN function returns the sine value of a floating-point argument ranging from 0 to

2 . Note that the argument is in units of radians. If converting to degrees, note that

360 degrees is equal to 2 radians.

Example

Sub main()

Dim MyFloat As Float

Dim Result As Float

MyFloat = pi/4

Result = SIN(MyFloat) the Result is 0.707107

Debug SIN(pi/4)= , Result, CR

End Sub

Chapter 6 Command Set

2 2 2

SQRT

Syntax
Result = SQRT(Argument)

Operation
To return the square root of a floating-point argument value.

Argument the floating-point operand of the SQRT function.

Result a floating-point variable that receives the result of the SQRT function.

Description
The SQRT command returns the square root of a floating-point value. The result of

the SQRT is a non-negative value.

Example

Sub main()

Dim MyFloat, Result As Float

MyFloat=100

Result = SQRT(MyFloat) the result is 10

Debug SQRT of 100 : , Result, CR

MyFloat=-100

Result = SQRT(MyFloat) the result is NaN

Debug SQRT of -100 : , Result, CR

End Sub

Chapter 6 Command Set

2 2 3

STRING2FLOAT

Syntax
FloatVar = STRING2FLOAT(StringVar)

Operation
To convert an ASCII character string into a floating-point value.

StringVar the ASCII character string operand of the STRING2FLOAT

function.

FloatVar a Float type variable that receives the result of the conversion.

Description
The STRING2FLOAT command converts an ASCII character string into a floating-

point value. The value expressed into the ASCII character string must be a floating-

point format. The floating-point format is composed of a sign character, a 5-digit

mantissa with radix point, an exponent sign character E, the exponent sign character

and 2-digit exponent. For example +3.1416E-01.

Example

Sub main()

Dim MyString As String * 12

Dim MyFloat As Float

MyString = 9500

MyFloat =STRING2FLOAT(MyString) incorrect format

Debug STRING2FLOAT of , MyString, : , MyFloat, CR

MyString = +3.1416E-01

MyFloat =STRING2FLOAT(MyString) the result is +3.1416E-01

Debug STRING2FLOAT of , MyString, :", MyFloat, CR

Chapter 6 Command Set

2 2 4

MyString = 0.031416

MyFloat =STRING2FLOAT(MyString) incorrect format

Debug STRING2FLOAT of , MyString,": , MyFloat, CR

End Sub

Chapter 6 Command Set

2 2 5

STRREVERSE

Syntax
STRREVERSE(TargetString)

Operation
Returns a string with all characters in reversed order of the given string.

TargetString the string to be converted.

Description
The STRREVERSE command reverses all the characters of the given string.

Example

Sub main()

Dim TargetString As String * 12

TargetString = Hello World!

Debug TargetString is , TargetString, CR

STRREVERSE(TargetString) MyString contains !dlrow olleH

Debug TargetString has been reversed to , TargetString, CR

End Sub

Chapter 6 Command Set

2 2 6

SUB...END SUB

Syntax
SUB SubName(ArgList)

{Statements}

END SUB

Operation
Declares a procedure with an optional argument list.

SubName the name of the procedure contains a sequence of letters, digits and

an underscore. The leading character must be a letter.

ArgList is a list of the arguments required in the procedure. The argument is

preceded with either a byval or byref modifier for argument passing. The

parenthesis cannot be omitted even if there is no argument required.

Statements any valid innoBASIC™ statement.

Description
The SUB command declares a procedure which can be invoked by its SubName to

execute some specific program.

Example

Sub SayHi()

Debug Hi! ,CR

End Sub

Chapter 6 Command Set

2 2 7

TOGGLE

Syntax
TOGGLE Pin

Operation
Toggles the state of an output pin

Pin a constant or variable (0 ~23) that specifies which pin the high or low

level is to be applied to. For the 24-pin BASIC Commander®, the Pin value

ranges from 0~15.

Description
This command will toggle the specified pin to a high level of 5 volts or a low level of

0 volts. Usually, a pin must be changed to either an input or output mode in advance

to execute the corresponding input or output operations. However, because only one

pin is involved in the TOGGLE operation, the pin will be changed to the output mode

automatically by the system. It is not necessary to first execute an OUTPUT command

beforehand. Please refer to the HIGH command for other related information.

Example
Refer to the HIGH command for usage.

Chapter 6 Command Set

2 2 8

UCASE

Syntax
UCASE(TargetString)

Operation
Changes the specified string to upper case letters.

TargetString the string to be converted.

Command Description
The UCASE command changes the specified string to upper case letters.

Example
Refer to the LCASE command for usage.

Chapter 6 Command Set

2 2 9

WORD2FLOAT

Syntax
Result = WORD2FLOAT(Argument)

Operation
To convert a Word value into its floating-point format.

Argument the Word operand of the WORD2FLOAT function.

Result a floating-point variable that receives the result of the WORD2FLOAT

function.

Description
The WORD2FLOAT command converts a Word value into its floating-point format.

The floating-point result will be an integral value ranging from 0.0 to 65535.0.

Example

Sub main()

Dim MyWord As Word

Dim MyFloat As Float

MyWord = 0

MyFloat = WORD2FLOAT(MyWord)

Debug MyWord = , MyWord, MyFloat = , MyFloat, CR

MyWord = 65535

MyFloat = WORD2FLOAT(MyWord)

Debug MyWord = , MyWord, MyFloat = , MyFloat, CR

End Sub

Chapter 6 Command Set

2 3 0

WRITEPORT

Syntax
WRITEPORT Port, Data

If the port number is a constant, you may also use one of the following format types

instead.

WRITEPORT0 Data

WRITEPORT1 Data

WRITEPORT2 Data

Operation
To write data to the specified I/O port without changing the direction settings.

Port a constant or variable (0 ~2) that specifies the port number. Port 0

consists of Pins P0~P7, while Port 1 consists of Pins P8~P15, and Port 2 consists

of Pins P16~P23. For the 24-pin BASIC Commander®, the Port value is 0 or 1.

Data a constant or variable which specifies the data to be written to the

specified Port.

Description
The WRITEPORT command is used to write digital signals to the I/O port. Unlike the

OUT command, for which the I/O mode of the pin will be changed to the output mode

automatically, for the WRITEPORT command, there are 8 pins involved and each pin

may be set to either input or output mode. You have to configure each bit explicitly.

Data 0 will set the corresponding pin to a low state and 1 to a high state. For pins

which with smaller index are of the lower bit order of a data byte.

For those pins that are setup in the input mode, writing data to these pins will not

affect the I/O pins. If these pins are reconfigured to the output mode at a later time, the

previous output data stored in the buffer will then take effect.

Chapter 6 Command Set

2 3 1

Example
Refer to the READPORT command for usage.

Chapter 6 Command Set

2 3 2

2 3 3

Appendix

Appendix

2 3 4

Appendix

2 3 5

Appendix

Appendix A ASCII Table

The following table lists the first 128 ASCII characters. Note that the first 32 codes are control

codes. They don't have standardized screen symbols. Their symbols are represented with names

used in referring to these codes. For example, to move the cursor to the beginning of the next

line, the LF (Line Feed) and CR (Carriage Return) control codes are used.

Dec

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Hex

00

01

02

03

04

05

06

07

08

09

0A

0B

0C

0D

0E

0F

10

11

12

13

14

15

16

17

18

19

1A

1B

1C

1D

1E

1F

Char

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

Name / Function

Null

Start of Heading

Start of Text

End of Text

End of Transmission

Enquiry

Acknowledge

Bell

Backspace

Horizontal Tab

Line Feed

Vertical Tab

Form Feed

Carriage Return

Shift out

Shift In

Data Link Escape

Device Control 1

Device Control 2

Device Control 3

Device Control 4

Negative Acknowledge

Synchronous Idle

End of Trans. Block

Cancel

End of Medium

Substitute

Escape

File Separator

Group Separator

Record Separator

Unit Separator

Dec

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Hex

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

Char

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

{

I

}

~

DEL

Dec

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

Hex

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

Char

@

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

[

\

]

^

-

Dec

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

Hex

20

21

22

23

24

25

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

Char

space

!

"

#

$

%

&

'

(

)

*

+

-

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

2 3 6

Appendix

2 3 7

Appendix B - InnoBASIC™ Keywords

The following table lists all the keywords reserved in the innoBASIC™ language.

Appendix

#DEFINE #ELSE #ELSEIF #ENDIF
#IFDEF #IFNDEF ABS ACOS
AND AS ASIN ATAN
ATAN2 BELL BKSP BOOLEAN
BUTTON BYREF BYTE BYTE2FLOAT
BYVAL CALL CASE CEIL
CHECKMODULE CLREOL CLREOS CLS
CONST CONTINUE COS COUNT
CSRD CSRL CSRR CSRU
CR DEBUG DEBUGFILE DEBUGIN
DEBUGINFILE DEFAULT DIM DIRPIN0 ~ 31
DIRPORT0 ~ 2 DO DWORD DWORD2FLOAT
ELSE ELSEIF END ENUM
EVENT EXIT EXP EXP10
FALSE FLOAT2BYTE FLOAT2DWORD FLOAT2INTEGER
FLOAT2LONG FLOAT2REALSTRING FLOAT2SHORT FLOAT2STRING
FLOAT2WORD FLOOR FOR FREQOUT
FUNCTION GETDIRPORT GETDIRPORT0 ~ 2 GOTO
HIGH HOME I2CIN I2COUT
IF IN INPUT INTEGER
INTEGER2FLOAT KEYIN KEYSCAN LCASE
LCDCMD LCDIN LCDOUT LEFT
LEN LOG LOG10 LONG
LONG2FLOAT LOOP LOW MID
MOD NEXT NOT OR
OUTPUT PAUSE PERIPHERAL PERSISTENTBYTE
PERSISTENTDWORD PERSISTENTFLOAT PERSISTENTINTEGER PERSISTENTLONG
PERSISENTSHORT PERSISTENTWORD PIN0 ~ 31 PORT0 ~ 2
PULSEIN PULSEOUT PWM RANDOM
RCTIME READPORT READPORT0 ~ 2 RESETMODULE
RETURN REVERSE SERIN SEROUT
SELECT SETDIRPORT SETDIRPORT0 ~ 2 SGN
SHORT SHORT2FLOAT SIN SQRT
STEP STRING STRING2FLOAT STRREVERSE
SUB TAB THEN TO
TOGGLE TRUE UCASE UNTIL
WHILE WORD WORD2FLOAT WRITEPORT
WRITEPORT0 ~ 2 XOR

